Hornstein Melissa K, Bajaj Vikram S, Griffin Robert G, Temkin Richard J
M. K. Hornstein was with the Department of Electrical Engineering and Computer Science and the Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA. She is now with the Naval Research Laboratory, Washington, DC 20375 USA. V. S. Bajaj and R. G. Griffin are with the Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA. R. J. Temkin is with the Department of Physics and the Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2007 Feb;35(1):27-30. doi: 10.1109/TPS.2006.889295.
The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE(2) (,) (3) (,) (1) mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents.
回旋管振荡器是一种通过太赫兹辐射产生高平均功率毫米波的源。在本文中,我们报道了一台可调谐233GHz回旋管振荡器的低束流功率和高效运行情况。低电压运行模式为通过减小电子枪、电源、收集极和冷却系统的尺寸来进一步使回旋管小型化提供了一条途径,这将有利于需要便携性的工业和科学应用。对TE(2) (,) (3) (,) (1)模式下低电压运行的详细研究表明,在3.5kV时,该模式可以用小于7W的束流功率激发。在用3.5kV束流电压和50mA束流电流进行连续波运行期间,回旋管在233.2GHz产生12W的射频功率。EGUN电子光学代码描述了电子枪的低电压运行情况。利用从EGUN模拟得出的枪运行参数,我们表明线性理论能够充分预测低实验起始电流。