Khamaganov V, Karunanandan R, Rodriguez A, Crowley J N
Division of Atmospheric Chemistry, Max-Planck-Institut für Chemie, 55020 Mainz, Germany.
Phys Chem Chem Phys. 2007 Aug 21;9(31):4098-113. doi: 10.1039/b701382e. Epub 2007 Apr 2.
The formation of CH(3) in the 248 or 266 nm photolysis of acetone (CH(3)C(O)CH(3)), 2-butanone (methylethylketone, MEK, CH(3)C(O)C(2)H(5)) and acetyl bromide (CH(3)C(O)Br) was examined using the pulsed photolytic generation of the radical and its detection by transient absorption spectroscopy at 216.4 nm. Experiments were carried out at room temperature (298 +/- 3 K) and at pressures between approximately 5 and 1500 Torr N(2). Quantum yields for CH(3) formation were derived relative to CH(3)I photolysis at the same wavelength in back-to-back experiments. For acetone at 248 nm, the yield of CH(3) was greater than unity at low pressures (1.42 +/- 0.15 extrapolated to zero pressure) confirming that a substantial fraction of the CH(3)CO co-product can dissociate to CH(3) + CO under these conditions. At pressures close to atmospheric the quantum yield approached unity, indicative of almost complete collisional relaxation of the CH(3)CO radical. Measurements of increasing CH(3)CO yield with pressure confirmed this. Contrasting results were obtained at 266 nm, where the yields of CH(3) (and CH(3)CO) were close to unity (0.93 +/- 0.1) and independent of pressure, strongly suggesting that nascent CH(3)CO is insufficiently activated to decompose on the time scales of these experiments at 298 K. In the 248 nm photolysis of CH(3)C(O)Br, CH(3) was observed with a pressure independent quantum yield of 0.92 +/- 0.1 and CH(3)CO remained below the detection limit, suggesting that CH(3)CO generated from CH(3)COBr photolysis at 248 nm is too highly activated to be quenched by collision. Similar to CH(3)C(O)CH(3), the photolysis of CH(3)C(O)C(2)H(5) at 248 nm revealed pressure dependent yields of CH(3), decreasing from 0.45 at zero pressure to 0.19 at pressures greater than 1000 Torr with a concomitant increase in the CH(3)CO yield. As part of this study, the absorption cross section of CH(3) at 216.4 nm (instrumental resolution of 0.5 nm) was measured to be (4.27 +/- 0.2) x 10(-17) cm(2) molecule(-1) and that of C(2)H(5) at 222 nm was (2.5 +/- 0.6) x 10(-18) cm(2) molecule(-1). An absorption spectrum of gas-phase CH(3)C(O)Br (210-305 nm) is also reported for the first time.
利用自由基的脉冲光解生成及其在216.4 nm处的瞬态吸收光谱检测,研究了丙酮(CH₃C(O)CH₃)、2-丁酮(甲基乙基酮,MEK,CH₃C(O)C₂H₅)和乙酰溴(CH₃C(O)Br)在248或266 nm光解过程中CH₃的形成。实验在室温(298 ± 3 K)和约5至1500 Torr N₂的压力下进行。在背对背实验中,相对于相同波长下CH₃I的光解,得出了CH₃形成的量子产率。对于248 nm处的丙酮,在低压下CH₃的产率大于1(外推至零压力时为1.42 ± 0.15),这证实了在这些条件下,相当一部分CH₃CO副产物可分解为CH₃ + CO。在接近大气压的压力下,量子产率接近1,表明CH₃CO自由基几乎完全发生了碰撞弛豫。CH₃CO产率随压力增加的测量结果证实了这一点。在266 nm处得到了相反的结果,其中CH₃(和CH₃CO)的产率接近1(0.93 ± 0.1)且与压力无关,这强烈表明新生的CH₃CO在298 K下这些实验的时间尺度上活化不足,无法分解。在CH₃C(O)Br的248 nm光解中,观察到CH₃的压力无关量子产率为0.92 ± 0.1,而CH₃CO仍低于检测限,这表明248 nm处CH₃COBr光解产生的CH₃CO活化程度过高,无法被碰撞淬灭。与CH₃C(O)CH₃类似,CH₃C(O)C₂H₅在248 nm处的光解显示CH₃的产率与压力有关,从零压力下的0.45降至大于1000 Torr压力下的0.19,同时CH₃CO产率增加。作为本研究的一部分,测量了CH₃在216.4 nm处(仪器分辨率为0.5 nm)的吸收截面为(4.27 ± 0.2)×10⁻¹⁷ cm² molecule⁻¹,C₂H₅在222 nm处的吸收截面为(2.5 ± 0.6)×10⁻¹⁸ cm² molecule⁻¹。还首次报道了气相CH₃C(O)Br的吸收光谱(210 - 305 nm)。