Kovács Gergely, Zádor Judit, Farkas Edit, Nádasdi Rebeka, Szilágyi István, Dóbé Sándor, Bérces Tibor, Márta Ferenc, Lendvay György
Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary.
Phys Chem Chem Phys. 2007 Aug 21;9(31):4142-54. doi: 10.1039/b706216h. Epub 2007 Jun 28.
The reactions CH(3)CO + O(2)--> products (1), CH(3)CO + O(2)--> OH +other products (1b) and CH(3)C(O)CH(2) + O(2)--> products (2) have been studied in isothermal discharge flow reactors with laser induced fluorescence monitoring of OH and CH(3)C(O)CH(2) radicals. The experiments have been performed at overall pressures between 1.33 and 10.91 mbar of helium and 298 +/- 1 K reaction temperature. OH formation has been found to be the dominant reaction channel for CH(3)CO + O(2): the branching ratio, Gamma(1b) = k(1b)/k(1), is close to unity at around 1 mbar, but decreases rapidly with increasing pressure. The rate constant of the overall reaction, k(2), has been found to be pressure dependent: the fall-off behaviour has been analysed in comparison with reported data. Electronic structure calculations have confirmed that at room temperature the reaction of CH(3)C(O)CH(2) with O(2) is essentially a recombination-type process. At high temperatures, the further reactions of the acetonyl-peroxyl adduct may yield OH radicals, but the most probable channel seems to be the O(2)-catalysed keto-enol transformation of acetonyl. Implications of the results for atmospheric modelling studies have been discussed.
通过激光诱导荧光监测OH和CH₃C(O)CH₂自由基,在等温放电流动反应器中研究了反应CH(3)CO + O(2)→产物(1)、CH(3)CO + O(2)→OH +其他产物(1b)以及CH(3)C(O)CH(2) + O(2)→产物(2)。实验在氦气总压为1.33至10.91毫巴、反应温度为298±1K的条件下进行。已发现OH的形成是CH(3)CO + O(2)的主要反应通道:分支比Gamma(1b) = k(1b)/k(1)在约1毫巴时接近1,但随压力增加迅速下降。已发现总反应的速率常数k(2)与压力有关:与已报道的数据相比分析了其衰减行为。电子结构计算证实,在室温下CH(3)C(O)CH(2)与O(2)的反应本质上是一个重组型过程。在高温下,丙酮酰过氧加合物的进一步反应可能产生OH自由基,但最可能的通道似乎是O(2)催化的丙酮酰酮 - 烯醇转化。讨论了这些结果对大气模型研究的意义。