Suppr超能文献

用于评估纵向协变量概况对标量结果影响的两阶段功能混合模型。

Two-stage functional mixed models for evaluating the effect of longitudinal covariate profiles on a scalar outcome.

作者信息

Zhang Daowen, Lin Xihong, Sowers MaryFran

机构信息

Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, USA.

出版信息

Biometrics. 2007 Jun;63(2):351-62. doi: 10.1111/j.1541-0420.2006.00713.x.

Abstract

The Daily Hormone Study, a substudy of the Study of Women's Health Across the Nation (SWAN) consisting of more than 600 pre- and perimenopausal women, includes a scalar measure of total hip bone mineral density (BMD) together with repeated measures of creatinine-adjusted follicle stimulating hormone (FSH) assayed from daily urine samples collected over one menstrual cycle. It is of scientific interest to investigate the effect of the FSH time profile during a menstrual cycle on total hip BMD, adjusting for age and body mass index. The statistical analysis is challenged by several features of the data: (1) the covariate FSH is measured longitudinally and its effect on the scalar outcome BMD may be complex; (2) due to varying menstrual cycle lengths, subjects have unbalanced longitudinal measures of FSH; and (3) the longitudinal measures of FSH are subject to considerable among- and within-subject variations and measurement errors. We propose a measurement error partial functional linear model, where repeated measures of FSH are modeled using a functional mixed effects model and the effect of the FSH time profile on BMD is modeled using a partial functional linear model by treating the unobserved true subject-specific FSH time profile as a functional covariate. We develop a two-stage nonparametric regression calibration method using period smoothing splines. Using the connection between smoothing splines and mixed models, we show that a key feature of our approach is that estimation at both stages can be conveniently cast into a unified mixed model framework. A simple testing procedure for constant functional covariate effect is also proposed. The proposed methods are evaluated using simulation studies and applied to the SWAN data.

摘要

“每日激素研究”是“全国女性健康研究”(SWAN)的一项子研究,该子研究包含600多名绝经前和围绝经期女性,包括一项对全髋骨矿物质密度(BMD)的标量测量,以及对在一个月经周期内收集的每日尿液样本中肌酐校正促卵泡生成素(FSH)的重复测量。研究月经周期中FSH时间曲线对全髋BMD的影响,并对年龄和体重指数进行校正,具有科学意义。数据的几个特征给统计分析带来了挑战:(1)协变量FSH是纵向测量的,其对标量结果BMD的影响可能很复杂;(2)由于月经周期长度不同,受试者对FSH的纵向测量不均衡;(3)FSH的纵向测量存在相当大的个体间和个体内变异以及测量误差。我们提出了一种测量误差部分函数线性模型,其中使用函数混合效应模型对FSH的重复测量进行建模,通过将未观察到的真实个体特异性FSH时间曲线视为函数协变量,使用部分函数线性模型对FSH时间曲线对BMD的影响进行建模。我们开发了一种使用周期平滑样条的两阶段非参数回归校准方法。利用平滑样条和混合模型之间的联系,我们表明我们方法的一个关键特征是两个阶段的估计都可以方便地纳入一个统一的混合模型框架。还提出了一种用于常数函数协变量效应的简单检验程序。通过模拟研究对所提出的方法进行了评估,并将其应用于SWAN数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验