Suppr超能文献

一种用于估计数量性状基因座上位性效应的经验贝叶斯方法。

An empirical Bayes method for estimating epistatic effects of quantitative trait loci.

作者信息

Xu Shizhong

机构信息

Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California 92521, USA.

出版信息

Biometrics. 2007 Jun;63(2):513-21. doi: 10.1111/j.1541-0420.2006.00711.x.

Abstract

The genetic variance of a quantitative trait is often controlled by the segregation of multiple interacting loci. Linear model regression analysis is usually applied to estimating and testing effects of these quantitative trait loci (QTL). Including all the main effects and the effects of interaction (epistatic effects), the dimension of the linear model can be extremely high. Variable selection via stepwise regression or stochastic search variable selection (SSVS) is the common procedure for epistatic effect QTL analysis. These methods are computationally intensive, yet they may not be optimal. The LASSO (least absolute shrinkage and selection operator) method is computationally more efficient than the above methods. As a result, it has been widely used in regression analysis for large models. However, LASSO has never been applied to genetic mapping for epistatic QTL, where the number of model effects is typically many times larger than the sample size. In this study, we developed an empirical Bayes method (E-BAYES) to map epistatic QTL under the mixed model framework. We also tested the feasibility of using LASSO to estimate epistatic effects, examined the fully Bayesian SSVS, and reevaluated the penalized likelihood (PENAL) methods in mapping epistatic QTL. Simulation studies showed that all the above methods performed satisfactorily well. However, E-BAYES appears to outperform all other methods in terms of minimizing the mean-squared error (MSE) with relatively short computing time. Application of the new method to real data was demonstrated using a barley dataset.

摘要

数量性状的遗传方差通常由多个相互作用基因座的分离所控制。线性模型回归分析通常用于估计和检验这些数量性状基因座(QTL)的效应。包括所有主效应和相互作用效应(上位性效应),线性模型的维度可能会极高。通过逐步回归或随机搜索变量选择(SSVS)进行变量选择是上位性效应QTL分析的常用方法。这些方法计算量很大,但可能并非最优。LASSO(最小绝对收缩和选择算子)方法在计算上比上述方法更高效。因此,它已在大型模型的回归分析中广泛应用。然而,LASSO从未应用于上位性QTL的遗传定位,在这种情况下,模型效应的数量通常比样本量多很多倍。在本研究中,我们开发了一种经验贝叶斯方法(E-BAYES),用于在混合模型框架下定位上位性QTL。我们还测试了使用LASSO估计上位性效应的可行性,研究了完全贝叶斯SSVS,并重新评估了惩罚似然(PENAL)方法在上位性QTL定位中的应用。模拟研究表明,上述所有方法的表现都令人满意。然而,在以相对较短的计算时间最小化均方误差(MSE)方面,E-BAYES似乎优于所有其他方法。使用大麦数据集展示了新方法在实际数据中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验