Krohn T, Kaiser H-J, Gagel B, Boy C, Schaefer W M, Buell U, Zimny M
Klinik für Nuklearmedizin, Universitätsklinikum Aachen, 52074 Aachen.
Nuklearmedizin. 2007;46(4):141-8.
The standardized uptake value (SUV) of 18FDG-PET is an important parameter for therapy monitoring and prognosis of malignant lesions. SUV determination requires delineating the respective volume of interest against surrounding tissue. The present study proposes an automatic image segmentation algorithm for lesion volume and FDG uptake quantitation.
A region growing-based algorithm was developed, which goes through the following steps: 1. Definition of a starting point by the user. 2. Automatic determination of maximum uptake within the lesion. 3. Calculating a threshold value as percentage of maximum. 4. Automatic 3D lesion segmentation. 5. Quantitation of lesion volume and SUV. The procedure was developed using CTI CAPP and ECAT 7.2 software. Validation was done by phatom studies (Jaszczak phantom, various "lesion" sizes and contrasts) and on studies of NSCLC patients, who underwent clinical CT and FDG-PET scanning.
Phantom studies demonstrated a mean error of 3.5% for volume quantification using a threshold of 41% for contrast ratios >or=5 : 1 and sphere volumes >5 ml. Comparison between CT- and PET-based volumetry showed a high correlation of both methods (r = 0.98) for lesions with homogeneous FDG uptake. Radioactivity concentrations were underestimated by on average -41%. Employing an empirical threshold of 50% for SUV determination, the underestimation decreased to on average -34%.
The algorithm facilitates an easy and reproducible SUV quantification and volume assessment of PET lesions in clinical practice. It was validated using NSCLC patient data and should also be applicable to other tumour entities.
18氟脱氧葡萄糖正电子发射断层扫描(18FDG-PET)的标准化摄取值(SUV)是恶性病变治疗监测和预后的重要参数。SUV的测定需要将感兴趣的区域与周围组织区分开来。本研究提出了一种用于病变体积和FDG摄取定量的自动图像分割算法。
开发了一种基于区域生长的算法,该算法经过以下步骤:1. 用户定义一个起点。2. 自动确定病变内的最大摄取量。3. 计算作为最大摄取量百分比的阈值。4. 自动进行三维病变分割。5. 病变体积和SUV的定量。该程序使用CTI CAPP和ECAT 7.2软件开发。通过体模研究(Jaszczak体模,各种“病变”大小和对比度)以及对接受临床CT和FDG-PET扫描的非小细胞肺癌(NSCLC)患者的研究进行验证。
体模研究表明,对于对比度≥5:1且球体体积>5 ml的情况,使用41%的阈值进行体积定量时,平均误差为3.5%。对于FDG摄取均匀的病变,基于CT和PET的体积测量法之间的比较显示两种方法具有高度相关性(r = 0.98)。放射性浓度平均低估了-41%。在确定SUV时采用50%的经验阈值,低估率平均降至-34%。
该算法便于在临床实践中对PET病变进行简单且可重复的SUV定量和体积评估。它已通过NSCLC患者数据进行验证,也应适用于其他肿瘤实体。