Chambers Lucy A, Rollins Brett M, Tarran Robert
Cystic Fibrosis/Pulmonary Research & Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
Respir Physiol Neurobiol. 2007 Dec 15;159(3):256-70. doi: 10.1016/j.resp.2007.06.005. Epub 2007 Jun 17.
The cystic fibrosis transmembrane conductance regulator CFTR gene is found on chromosome 7 [Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., Tsui, L.C., 1989. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073-1080; Riordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.L., et al., 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066-1073] and encodes for a 1480 amino acid protein which is present in the plasma membrane of epithelial cells [Anderson, M.P., Sheppard, D.N., Berger, H.A., Welsh, M.J., 1992. Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am. J. Physiol. 263, L1-L14]. This protein appears to have many functions, but a unifying theme is that it acts as a protein kinase C- and cyclic AMP-regulated Cl(-) channel [Winpenny, J.P., McAlroy, H.L., Gray, M.A., Argent, B.E., 1995. Protein kinase C regulates the magnitude and stability of CFTR currents in pancreatic duct cells. Am. J. Physiol. 268, C823-C828; Jia, Y., Mathews, C.J., Hanrahan, J.W., 1997. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J. Biol. Chem. 272, 4978-4984]. In the superficial epithelium of the conducting airways, CFTR is involved in Cl(-) secretion [Boucher, R.C., 2003. Regulation of airway surface liquid volume by human airway epithelia. Pflugers Arch. 445, 495-498] and also acts as a regulator of the epithelial Na(+) channel (ENaC) and hence Na(+) absorption [Boucher, R.C., Stutts, M.J., Knowles, M.R., Cantley, L., Gatzy, J.T., 1986. Na(+) transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J. Clin. Invest. 78, 1245-1252; Stutts, M.J., Canessa, C.M., Olsen, J.C., Hamrick, M., Cohn, J.A., Rossier, B.C., Boucher, R.C., 1995. CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847-850]. In this chapter, we will discuss the regulation of these two ion channels, and how they can influence liquid movement across the superficial airway epithelium.
囊性纤维化跨膜传导调节因子CFTR基因位于7号染色体上[凯雷姆,B.,罗门斯,J.M.,布坎南,J.A.,马尔凯维茨,D.,考克斯,T.K.,查克拉瓦蒂,A.,布赫瓦尔德,M.,崔,L.C.,1989年。囊性纤维化基因的鉴定:遗传分析。《科学》245卷,第1073 - 1080页;里奥丹,J.R.,罗门斯,J.M.,凯雷姆,B.,阿隆,N.,罗兹马赫尔,R.,格雷尔恰克,Z.,齐伦斯基,J.,洛克,S.,普拉夫西克,N.,周,J.L.等人,1989年。囊性纤维化基因的鉴定:互补DNA的克隆与特性分析。《科学》245卷,第1066 - 1073页],编码一种由1480个氨基酸组成的蛋白质,该蛋白质存在于上皮细胞的质膜中[安德森,M.P.,谢泼德,D.N.,伯杰,H.A.,威尔士,M.J.,1992年。正常和囊性纤维化气道及肠道上皮顶端膜中的氯离子通道。《美国生理学杂志》263卷,L1 - L14]。这种蛋白质似乎具有多种功能,但一个共同的主题是它作为一种蛋白激酶C和环磷酸腺苷调节的Cl⁻通道发挥作用[温彭尼,J.P.,麦卡勒罗伊,H.L.,格雷,M.A.,阿金特,B.E.,1995年。蛋白激酶C调节胰腺导管细胞中CFTR电流的大小和稳定性。《美国生理学杂志》268卷,C823 - C828;贾,Y.,马修斯,C.J.,汉拉汉,J.W.,1997年。蛋白激酶C磷酸化是蛋白激酶A急性激活囊性纤维化跨膜传导调节因子所必需的。《生物化学杂志》272卷,第4978 - 4984页]。在传导气道的表层上皮中,CFTR参与Cl⁻分泌[鲍彻,R.C.,2003年。人气道上皮对气道表面液体量的调节。《普弗吕格尔斯 Archiv》445卷,第495 - 498页],并且还作为上皮钠通道(ENaC)的调节剂,从而调节Na⁺吸收[鲍彻,R.C.,斯塔茨,M.J.,诺尔斯,M.R.,坎特利,L.,加齐,J.T.,1986年。囊性纤维化呼吸上皮中的Na⁺转运。基础速率异常及对腺苷酸环化酶激活的反应。《临床研究杂志》78卷,第1245 - 1252页;斯塔茨,M.J.,卡内萨,C.M.,奥尔森,J.C.,哈姆里克,M.,科恩,J.A.,罗西耶,B.C.,鲍彻,R.C.,1995年。CFTR作为钠通道的环磷酸腺苷依赖性调节剂。《科学》269卷,第847 - 85页]。在本章中,我们将讨论这两种离子通道的调节,以及它们如何影响液体通过气道表层上皮的移动。