Guinea Elena, Arias Conchita, Cabot Pere Lluís, Garrido José Antonio, Rodríguez Rosa María, Centellas Francesc, Brillas Enric
Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
Water Res. 2008 Jan;42(1-2):499-511. doi: 10.1016/j.watres.2007.07.046. Epub 2007 Aug 1.
Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed.
含有164毫克/升pH值为3.0的L(-1)水杨酸的溶液已通过电化学高级氧化工艺进行降解,如阳极氧化、利用电生成H₂O₂的阳极氧化、电芬顿、光电芬顿和太阳能光电芬顿,电流密度恒定。在一个带有铂或硼掺杂金刚石(BDD)阳极以及石墨或O₂扩散阴极的单室电解槽中,对它们的氧化能力进行了比较研究。在后面三种工艺中,向溶液中加入0.5毫摩尔的Fe(2+),以便通过Fe(2+)与在O₂扩散阴极生成的H₂O₂之间的芬顿反应形成羟基自由基(·OH)。使用BDD的所有方法以及使用铂的光电芬顿和太阳能光电芬顿都实现了完全矿化。与BDD产生的·OH快速破坏污染物相比,铂阳极上水氧化形成的·OH对大多数污染物的去除速度较慢,这解释了铂阳极氧化和电芬顿中去污效果不佳的原因。芬顿反应产生的·OH能迅速氧化所有芳香族污染物,但无法破坏最终的铁(III)-草酸盐络合物。由于太阳光提供的UVA辐射使这些络合物发生非常快速的光脱羧反应,太阳能光电芬顿处理总是能产生更快的降解速率。研究了电流密度对所有方法的降解速率、效率和能量成本的影响。水杨酸的降解始终遵循准一级动力学。检测到2,3 - 二羟基苯甲酸、2,5 - 二羟基苯甲酸、2,6 - 二羟基苯甲酸、α - 酮戊二酸、乙醇酸、乙醛酸、马来酸、富马酸、苹果酸、酒石酸和草酸作为氧化产物。考虑到所有这些中间体,提出了水杨酸矿化的一般反应序列。