Lee Henry H C, Walker Joshua A, Williams Jeffery R, Goodier Richard J, Payne John A, Moss Stephen J
Department of Neuroscience, School of Medicine, University of Pennsylvania, Pennsylvania 19104, USA.
J Biol Chem. 2007 Oct 12;282(41):29777-84. doi: 10.1074/jbc.M705053200. Epub 2007 Aug 10.
The potassium chloride cotransporter KCC2 plays a major role in the maintenance of transmembrane chloride potential in mature neurons; thus KCC2 activity is critical for hyperpolarizing membrane currents generated upon the activation of gamma-aminobutyric acid type A and glycine (Gly) receptors that underlie fast synaptic inhibition in the adult central nervous system. However, to date an understanding of the cellular mechanism that neurons use to modulate the functional expression of KCC2 remains rudimentary. Using Escherichia coli expression coupled with in vitro kinase assays, we first established that protein kinase C (PKC) can directly phosphorylate serine 940 (Ser(940)) within the C-terminal cytoplasmic domain of KCC2. We further demonstrated that Ser(940) is the major site for PKC-dependent phosphorylation for full-length KCC2 molecules when expressed in HEK-293 cells. Phosphorylation of Ser(940) increased the cell surface stability of KCC2 in this system by decreasing its rate of internalization from the plasma membrane. Coincident phosphorylation of Ser(940) increased the rate of ion transport by KCC2. It was further evident that phosphorylation of endogenous KCC2 in cultured hippocampal neurons is regulated by PKC-dependent activity. Moreover, in keeping with our recombinant studies, enhancing PKC-dependent phosphorylation increased the targeting of KCC2 to the neuronal cell surface. Our studies thus suggest that PKC-dependent phosphorylation of KCC2 may play a central role in modulating both the functional expression of this critical transporter in the brain and the strength of synaptic inhibition.
氯化钾协同转运蛋白KCC2在维持成熟神经元跨膜氯离子电位方面发挥着主要作用;因此,KCC2活性对于激活成年中枢神经系统快速突触抑制基础的A型γ-氨基丁酸和甘氨酸(Gly)受体时产生的超极化膜电流至关重要。然而,迄今为止,对于神经元用于调节KCC2功能表达的细胞机制的理解仍然很初级。通过结合体外激酶测定的大肠杆菌表达,我们首先确定蛋白激酶C(PKC)可以直接磷酸化KCC2 C末端胞质结构域内的丝氨酸940(Ser(940))。我们进一步证明,当在HEK-293细胞中表达时,Ser(940)是全长KCC2分子PKC依赖性磷酸化的主要位点。Ser(940)的磷酸化通过降低其从质膜内化的速率,增加了该系统中KCC2的细胞表面稳定性。Ser(940)的磷酸化同时增加了KCC2的离子转运速率。进一步明显的是,培养的海马神经元中内源性KCC2的磷酸化受PKC依赖性活性调节。此外,与我们的重组研究一致,增强PKC依赖性磷酸化增加了KCC2在神经元细胞表面的靶向性。因此,我们的研究表明,KCC2的PKC依赖性磷酸化可能在调节大脑中这种关键转运蛋白的功能表达和突触抑制强度方面发挥核心作用。