Weber Maren, Hartmann Anna-Maria, Beyer Timo, Ripperger Anne, Nothwang Hans Gerd
From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences.
From the Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Systematics and Evolutionary Biology Group, Institute for Biology and Environmental Sciences, and.
J Biol Chem. 2014 Jul 4;289(27):18668-79. doi: 10.1074/jbc.M114.567834. Epub 2014 May 21.
The neuron-specific cation chloride cotransporter KCC2 plays a crucial role in hyperpolarizing synaptic inhibition. Transporter dysfunction is associated with various neurological disorders, raising interest in regulatory mechanisms. Phosphorylation has been identified as a key regulatory process. Here, we retrieved experimentally observed phosphorylation sites of KCC2 from public databases and report on the systematic analysis of six phosphorylated serines, Ser(25), Ser(26), Ser(937), Ser(1022), Ser(1025), and Ser(1026). Alanine or aspartate substitutions of these residues were analyzed in HEK-293 cells. All mutants were expressed in a pattern similar to wild-type KCC2 (KCC2(WT)). Tl(+) flux measurements demonstrated unchanged transport activity for Ser(25), Ser(26), Ser(1022), Ser(1025), and Ser(1026) mutants. In contrast, KCC2(S937D), mimicking phosphorylation, resulted in a significant up-regulation of transport activity. Aspartate substitution of Thr(934), a neighboring putative phosphorylation site, resulted in a comparable increase in KCC2 transport activity. Both KCC2(T934D) and KCC2(S937D) mutants were inhibited by the kinase inhibitor staurosporine and by N-ethylmaleimide, whereas KCC2(WT), KCC2(T934A), and KCC2(S937A) were activated. The inverse staurosporine effect on aspartate versus alanine substitutions reveals a cross-talk between different phosphorylation sites of KCC2. Immunoblot and cell surface labeling experiments detected no alterations in total abundance or surface expression of KCC2(T934D) and KCC2(S937D) compared with KCC2(WT). These data reveal kinetic regulation of transport activity by these residues. In summary, our data identify a novel key regulatory phosphorylation site of KCC2 and a functional interaction between different conformation-changing post-translational modifications. The action of pharmacological agents aimed to modulate KCC2 activity for therapeutic benefit might therefore be highly context-specific.
神经元特异性阳离子 - 氯离子共转运体KCC2在超极化突触抑制中起关键作用。转运体功能障碍与多种神经系统疾病相关,这引发了人们对其调节机制的兴趣。磷酸化已被确定为关键的调节过程。在此,我们从公共数据库中检索了实验观察到的KCC2磷酸化位点,并报告了对六个磷酸化丝氨酸Ser(25)、Ser(26)、Ser(937)、Ser(1022)、Ser(1025)和Ser(1026)的系统分析。在HEK - 293细胞中分析了这些残基的丙氨酸或天冬氨酸替代。所有突变体均以与野生型KCC2(KCC2(WT))相似的模式表达。铊(+)通量测量表明,Ser(25)、Ser(26)、Ser(1022)、Ser(1025)和Ser(1026)突变体的转运活性未发生变化。相比之下,模拟磷酸化的KCC2(S937D)导致转运活性显著上调。相邻的假定磷酸化位点Thr(934)的天冬氨酸替代导致KCC2转运活性有类似增加。KCC2(T934D)和KCC2(S937D)突变体均被激酶抑制剂星形孢菌素和N - 乙基马来酰亚胺抑制,而KCC2(WT)、KCC2(T934A)和KCC2(S937A)被激活。星形孢菌素对天冬氨酸与丙氨酸替代的相反作用揭示了KCC2不同磷酸化位点之间的相互作用。免疫印迹和细胞表面标记实验检测到,与KCC2(WT)相比,KCC2(T934D)和KCC2(S937D)的总丰度或表面表达没有改变。这些数据揭示了这些残基对转运活性的动力学调节。总之,我们的数据确定了KCC2一个新的关键调节磷酸化位点以及不同构象变化的翻译后修饰之间的功能相互作用。因此,旨在调节KCC2活性以获得治疗益处的药物作用可能具有高度的背景特异性。