Department of Neuroscience, Tufts University, Boston, MA 02111, USA.
Mol Cell Neurosci. 2010 Oct;45(2):173-9. doi: 10.1016/j.mcn.2010.06.008. Epub 2010 Jun 20.
The activity of the neuronal-specific potassium chloride co-transporter KCC2 allows neurons to maintain low intracellular Cl(-) concentrations. These low Cl(-) concentrations are critical in mediating fast synaptic inhibition upon the activation of Cl(-)-permeable ligand-gated ion channels such as type A gamma-aminobutyric acid receptors (GABA(A)Rs). Deficits in KCC2 functional expression thus play central roles in the etiology of epilepsy and ischemia. It is emerging that KCC2 is phosphorylated on tyrosine residues, but the molecular substrates for this covalent modification within KCC2 and its functional significance remain poorly understood. Here we demonstrate that in HEK-293 cells the principal sites of tyrosine phosphorylation within KCC2 are residues 903 and 1087 (Y903/1087), which lie within the major C-terminal intracellular domain of KCC2. Phosphorylation of Y903/1087 decreases the cell surface stability of KCC2 principally by enhancing their lysozomal degradation. We further demonstrate that in cultured hippocampal neurons prolonged activation of muscarinic acetylcholine receptors (mAChRs) enhances KCC2 tyrosine phosphorylation and lysozomal degradation. Consistent with our in vitro studies, induction of status epilepticus (SE) in mice using pilocarpine, a mAChR agonist, induces large deficits in the cell surface stability of KCC2 together with enhanced tyrosine phosphorylation. Tyrosine phosphorylation of KCC2 is thus likely to play a key role in regulating the degradation of KCC2, a process that may be responsible for pathological losses of KCC2 function that are evident in SE and other forms of epilepsy.
神经元特异性钾氯离子共转运体 KCC2 的活性使神经元能够维持低细胞内氯离子浓度。这些低氯离子浓度在介导氯离子可渗透配体门控离子通道(如 A 型γ-氨基丁酸受体(GABA(A)Rs))激活后的快速突触抑制中至关重要。因此,KCC2 功能表达的缺陷在癫痫和缺血的发病机制中起着核心作用。现在已经发现 KCC2 酪氨酸残基上发生磷酸化,但 KCC2 内这种共价修饰的分子底物及其功能意义仍知之甚少。在这里,我们证明在 HEK-293 细胞中,KCC2 内酪氨酸磷酸化的主要位点是残基 903 和 1087(Y903/1087),它们位于 KCC2 的主要 C 端细胞内结构域内。Y903/1087 的磷酸化主要通过增强溶酶体降解来降低 KCC2 的细胞表面稳定性。我们进一步证明,在培养的海马神经元中,长时间激活毒蕈碱型乙酰胆碱受体(mAChRs)可增强 KCC2 酪氨酸磷酸化和溶酶体降解。与我们的体外研究一致,使用毛果芸香碱(mAChR 激动剂)在小鼠中诱导癫痫持续状态(SE)会导致 KCC2 的细胞表面稳定性出现大的缺陷,同时伴有酪氨酸磷酸化增强。因此,KCC2 的酪氨酸磷酸化可能在调节 KCC2 的降解中起着关键作用,这个过程可能是 SE 和其他形式的癫痫中明显存在的 KCC2 功能病理性丧失的原因。