Suppr超能文献

蛋白质-蛋白质复合物中静电相互作用的优化

Optimization of electrostatic interactions in protein-protein complexes.

作者信息

Brock Kelly, Talley Kemper, Coley Kacey, Kundrotas Petras, Alexov Emil

机构信息

South Carolina Governor School for Science and Mathematics, Hartsville, South Carolina, USA.

出版信息

Biophys J. 2007 Nov 15;93(10):3340-52. doi: 10.1529/biophysj.107.112367. Epub 2007 Aug 10.

Abstract

In this article, we present a statistical analysis of the electrostatic properties of 298 protein-protein complexes and 356 domain-domain structures extracted from the previously developed database of protein complexes (ProtCom, http://www.ces.clemson.edu/compbio/protcom). For each structure in the dataset we calculated the total electrostatic energy of the binding and its two components, Coulombic and reaction field energy. It was found that in a vast majority of the cases (>90%), the total electrostatic component of the binding energy was unfavorable. At the same time, the Coulombic component of the binding energy was found to favor the complex formation while the reaction field component of the binding energy opposed the binding. It was also demonstrated that the components in a wild-type (WT) structure are optimized/anti-optimized with respect to the corresponding distributions, arising from random shuffling of the charged side chains. The degree of this optimization was assessed through the Z-score of WT energy in respect to the random distribution. It was found that the Z-scores of Coulombic interactions peak at a considerably negative value for all 654 cases considered while the Z-score of the reaction field energy varied among different types of complexes. All these findings indicate that the Coulombic interactions within WT protein-protein complexes are optimized to favor the complex formation while the total electrostatic energy predominantly opposes the binding. This observation was used to discriminate WT structures among sets of structural decoys and showed that the electrostatic component of the binding energy is not a good discriminator of the WT; while, Coulombic or reaction field energies perform better depending upon the decoy set used.

摘要

在本文中,我们对从先前开发的蛋白质复合物数据库(ProtCom,http://www.ces.clemson.edu/compbio/protcom)中提取的298个蛋白质 - 蛋白质复合物和356个结构域 - 结构域结构的静电性质进行了统计分析。对于数据集中的每个结构,我们计算了结合的总静电能及其两个组成部分,即库仑能和反应场能。结果发现,在绝大多数情况下(>90%),结合能的总静电分量是不利的。同时,发现结合能的库仑分量有利于复合物的形成,而结合能的反应场分量则阻碍结合。还证明了野生型(WT)结构中的各组成部分相对于由带电侧链随机洗牌产生的相应分布进行了优化/反优化。通过WT能量相对于随机分布的Z分数评估这种优化程度。发现在所有654个考虑的案例中,库仑相互作用的Z分数在相当大的负值处达到峰值,而反应场能的Z分数在不同类型的复合物中有所不同。所有这些发现表明,野生型蛋白质 - 蛋白质复合物中的库仑相互作用经过优化以有利于复合物的形成,而总静电能主要阻碍结合。这一观察结果被用于在结构诱饵集中区分野生型结构,结果表明结合能的静电分量不是野生型的良好判别指标;而库仑能或反应场能根据所使用的诱饵集表现得更好。

相似文献

1
Optimization of electrostatic interactions in protein-protein complexes.
Biophys J. 2007 Nov 15;93(10):3340-52. doi: 10.1529/biophysj.107.112367. Epub 2007 Aug 10.
2
Electrostatic properties of protein-protein complexes.
Biophys J. 2006 Sep 1;91(5):1724-36. doi: 10.1529/biophysj.106.086025. Epub 2006 Jun 16.
3
Exploring the charge space of protein-protein association: a proteomic study.
Proteins. 2005 Aug 15;60(3):341-52. doi: 10.1002/prot.20489.
5
Electrostatic design of protein-protein association rates.
Methods Mol Biol. 2006;340:235-49. doi: 10.1385/1-59745-116-9:235.
7
PROTCOM: searchable database of protein complexes enhanced with domain-domain structures.
Nucleic Acids Res. 2007 Jan;35(Database issue):D575-9. doi: 10.1093/nar/gkl768. Epub 2006 Oct 28.
9
Evaluation of electrostatic interactions.
Curr Protoc Bioinformatics. 2003 Aug;Chapter 8:Unit 8.3. doi: 10.1002/0471250953.bi0803s02.
10
Understanding the recognition mechanism of protein-RNA complexes using energy based approach.
Curr Protein Pept Sci. 2010 Nov;11(7):629-38. doi: 10.2174/138920310794109166.

引用本文的文献

1
Exploring the potential of anticancer peptides as therapeutic agents for cancer treatment.
Res Pharm Sci. 2025 Mar 31;20(2):165-187. doi: 10.4103/RPS.RPS_75_24. eCollection 2025 Apr.
3
Juno and CD9 protein network organization in oolemma of mouse oocyte.
Front Cell Dev Biol. 2023 Aug 10;11:1110681. doi: 10.3389/fcell.2023.1110681. eCollection 2023.
5
Heliorhodopsin binds and regulates glutamine synthetase activity.
PLoS Biol. 2022 Oct 3;20(10):e3001817. doi: 10.1371/journal.pbio.3001817. eCollection 2022 Oct.
7
A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer.
Curr Top Med Chem. 2022;22(31):2571-2588. doi: 10.2174/1568026622666220516105049.
8
High-performance double-network ionogels enabled by electrostatic interaction.
RSC Adv. 2020 Mar 2;10(13):7424-7431. doi: 10.1039/c9ra09632a. eCollection 2020 Feb 18.
9
Modeling Electrostatic Force in Protein-Protein Recognition.
Front Mol Biosci. 2019 Sep 25;6:94. doi: 10.3389/fmolb.2019.00094. eCollection 2019.
10
A New DelPhi Feature for Modeling Electrostatic Potential around Proteins: Role of Bound Ions and Implications for Zeta-Potential.
Langmuir. 2017 Mar 7;33(9):2283-2295. doi: 10.1021/acs.langmuir.6b04430. Epub 2017 Feb 20.

本文引用的文献

1
Rapid Estimation of Solvation Energy for Simulations of Protein-Protein Association.
J Chem Theory Comput. 2005 Jan;1(1):143-52. doi: 10.1021/ct049946f.
3
Deciphering protein-protein interactions. Part I. Experimental techniques and databases.
PLoS Comput Biol. 2007 Mar 30;3(3):e42. doi: 10.1371/journal.pcbi.0030042.
4
Do electrostatic interactions destabilize protein-nucleic acid binding?
Biopolymers. 2007 Jun 5;86(2):112-8. doi: 10.1002/bip.20708.
5
Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies.
Biophys J. 2007 Mar 15;92(6):1891-9. doi: 10.1529/biophysj.106.092122. Epub 2007 Jan 5.
6
PROTCOM: searchable database of protein complexes enhanced with domain-domain structures.
Nucleic Acids Res. 2007 Jan;35(Database issue):D575-9. doi: 10.1093/nar/gkl768. Epub 2006 Oct 28.
7
Predicting 3D structures of transient protein-protein complexes by homology.
Biochim Biophys Acta. 2006 Sep;1764(9):1498-511. doi: 10.1016/j.bbapap.2006.08.002. Epub 2006 Aug 10.
8
PIPER: an FFT-based protein docking program with pairwise potentials.
Proteins. 2006 Nov 1;65(2):392-406. doi: 10.1002/prot.21117.
9
DOCKGROUND resource for studying protein-protein interfaces.
Bioinformatics. 2006 Nov 1;22(21):2612-8. doi: 10.1093/bioinformatics/btl447. Epub 2006 Aug 23.
10
Electrostatic contribution to the binding stability of protein-protein complexes.
Proteins. 2006 Oct 1;65(1):87-102. doi: 10.1002/prot.21070.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验