Suppr超能文献

结合静电作用的优化:巴纳酶-巴纳星蛋白复合物中的电荷互补性

Optimization of binding electrostatics: charge complementarity in the barnase-barstar protein complex.

作者信息

Lee L P, Tidor B

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.

出版信息

Protein Sci. 2001 Feb;10(2):362-77. doi: 10.1110/ps.40001.

Abstract

Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (K(d) approximately 10(-14) M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins.

摘要

理论和实验研究表明,极性基团和带电基团所需的大量去溶剂化能量损失,常常使其无法参与在室温附近的水溶液中对蛋白质折叠或结合时的净稳定性有重要贡献的静电相互作用。我们之前已经开发了一个用于计算优化静电相互作用的理论框架,并通过简化的几何结构说明了该算法的应用。给定一个受体和模型假设,该方法计算能在去溶剂化和结合相互作用效应之间提供最有利平衡的配体电荷分布。在本文中,该方法已扩展到使用实际分子形状来处理复合物。以巴纳酶作为靶受体,对巴纳酶 - 巴尔斯塔蛋白复合物进行了研究。通过改变巴尔斯塔的原子点电荷来优化静电结合自由能。巴纳酶和天然巴尔斯塔形成紧密复合物(解离常数K(d)约为10^(-14) M),在界面附近有许多带电和极性基团,这使得该系统特别适合研究静电效应在结合中的作用。结果表明,可以找到几组巴尔斯塔电荷(由不同约束条件下的优化产生),它们能在静电结合自由能方面带来相对较大的预测改善。根据这些最优结果,讨论了在水性环境中增强分子结合中静电相互作用效应的原理。我们的研究结果表明,一般来说,通过修饰极性和带电基团导致的静电结合自由能的增强可能是显著的。此外,最近提出的静电互补性定义被证明是检查结合界面的有用工具。最后,计算结果表明,对于它们之间的相互结合,野生型巴尔斯塔比巴纳酶更接近亲和力优化状态,这与这些蛋白质的已知作用一致。

相似文献

引用本文的文献

8
Extending human IgG half-life using structure-guided design.利用结构导向设计延长人 IgG 的半衰期。
MAbs. 2018 Oct;10(7):1098-1110. doi: 10.1080/19420862.2018.1490119. Epub 2018 Jul 26.

本文引用的文献

3
Raster3D: photorealistic molecular graphics.Raster3D:逼真的分子图形。
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
4
Implicit solvent models.隐式溶剂模型
Biophys Chem. 1999 Apr 5;78(1-2):1-20. doi: 10.1016/s0301-4622(98)00226-9.
6
Charge optimization leads to favorable electrostatic binding free energy.电荷优化可带来有利的静电结合自由能。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5958-61. doi: 10.1103/physreve.59.5958.
8
The maximal affinity of ligands.配体的最大亲和力。
Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):9997-10002. doi: 10.1073/pnas.96.18.9997.
10
Refinement and structural analysis of barnase at 1.5 A resolution.芽孢杆菌RNA酶在1.5埃分辨率下的精细结构与结构分析
Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):386-98. doi: 10.1107/s0907444998010865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验