Busch Andreas, Lacal Jesús, Martos Ariadna, Ramos Juan L, Krell Tino
Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda, 1, 18008 Granada, Spain.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13774-9. doi: 10.1073/pnas.0701547104. Epub 2007 Aug 10.
The TodS/TodT two-component system controls expression of the toluene dioxygenase (TOD) pathway for the metabolism of toluene in Pseudomonas putida DOT-T1E. TodS is a sensor kinase that ultimately controls tod gene expression through its cognate response regulator, TodT. We used isothermal titration calorimetry to study the binding of different compounds to TodS and related these findings to their capacity to induce gene expression in vivo. Agonistic compounds bound to TodS and induced gene expression in vivo. Toluene was a powerful agonist, but ortho-substitutions of toluene reduced or abolished in vivo responses, although TodS recognized o-xylene with high affinity. These compounds were called antagonists. We show that agonists and antagonists compete for binding to TodS both in vitro and in vivo. The failure of antagonists to induce gene expression in vivo correlated with their inability to stimulate TodS autophosphorylation in vitro. We propose intramolecular TodS signal transmission, not molecular recognition of compounds by TodS, to be the phenomenon that determines whether a given compound will lead to activation of expression of the tod genes. Molecular modeling identified residues F46, I74, F79, and I114 as being potentially involved in the binding of effector molecules. Alanine substitution mutants of these residues reduced affinities (2- to 345-fold) for both agonistic and antagonistic compounds. Our data indicate that determining the inhibitory activity of antagonists is a potentially fruitful alternative to design specific two-component system inhibitors for the development of new drugs to inhibit processes regulated by two-component systems.
TodS/TodT双组分系统控制着恶臭假单胞菌DOT-T1E中甲苯双加氧酶(TOD)途径的表达,该途径用于甲苯的代谢。TodS是一种传感激酶,它最终通过其同源反应调节因子TodT来控制tod基因的表达。我们使用等温滴定量热法研究了不同化合物与TodS的结合情况,并将这些发现与其在体内诱导基因表达的能力相关联。激动剂化合物与TodS结合并在体内诱导基因表达。甲苯是一种强效激动剂,但甲苯的邻位取代会降低或消除体内反应,尽管TodS能以高亲和力识别邻二甲苯。这些化合物被称为拮抗剂。我们表明激动剂和拮抗剂在体外和体内都竞争与TodS的结合。拮抗剂在体内无法诱导基因表达与其在体外无法刺激TodS自身磷酸化相关。我们提出分子内TodS信号传递,而非TodS对化合物的分子识别,是决定给定化合物是否会导致tod基因表达激活的现象。分子建模确定了残基F46、I74、F79和I114可能参与效应分子的结合。这些残基的丙氨酸取代突变体降低了对激动剂和拮抗剂化合物的亲和力(2至345倍)。我们的数据表明,确定拮抗剂的抑制活性是设计特定双组分系统抑制剂以开发新药来抑制由双组分系统调节的过程的一种潜在有效替代方法。