Suppr超能文献

血流动力学方法的状态空间模型:脑血氧水平依赖信号的非线性滤波

A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals.

作者信息

Riera Jorge J, Watanabe Jobu, Kazuki Iwata, Naoki Miura, Aubert Eduardo, Ozaki Tohru, Kawashima Ryuta

机构信息

Advanced Science and Technology of Materials, NICHe, Tohoku University, Sendai 980-8579, Japan.

出版信息

Neuroimage. 2004 Feb;21(2):547-67. doi: 10.1016/j.neuroimage.2003.09.052.

Abstract

In this paper, a new procedure is presented which allows the estimation of the states and parameters of the hemodynamic approach from blood oxygenation level dependent (BOLD) responses. The proposed method constitutes an alternative to the recently proposed Friston [Neuroimage 16 (2002) 513] method and has some advantages over it. The procedure is based on recent groundbreaking time series analysis techniques that have been, in this case, adopted to characterize hemodynamic responses in functional magnetic resonance imaging (fMRI). This work represents a fundamental improvement over existing approaches to system identification using nonlinear hemodynamic models and is important for three reasons. First, our model includes physiological noise. Previous models have been based upon ordinary differential equations that only allow for noise or error to enter at the level of observation. Secondly, by using the innovation method and the local linearization filter, not only the parameters, but also the underlying states of the system generating responses can be estimated. These states can include things like a flow-inducing signal triggered by neuronal activation, de-oxyhemoglobine, cerebral blood flow and volume. Finally, radial basis functions have been introduced as a parametric model to represent arbitrary temporal input sequences in the hemodynamic approach, which could be essential to understanding those brain areas indirectly related to the stimulus. Hence, thirdly, by inferring about the radial basis parameters, we are able to perform a blind deconvolution, which permits both the reconstruction of the dynamics of the most likely hemodynamic states and also, to implicitly reconstruct the underlying synaptic dynamics, induced experimentally, which caused these states variations. From this study, we conclude that in spite of the utility of the standard discrete convolution approach used in statistical parametric maps (SPM), nonlinear BOLD phenomena and unspecific input temporal sequences must be included in the fMRI analysis.

摘要

本文提出了一种新方法,可根据血氧水平依赖(BOLD)响应估计血流动力学方法的状态和参数。该方法是对最近提出的Friston[《神经图像》16(2002)513]方法的一种替代,且具有一些优势。此方法基于近期开创性的时间序列分析技术,在此用于表征功能磁共振成像(fMRI)中的血流动力学响应。这项工作是对使用非线性血流动力学模型进行系统识别的现有方法的重大改进,其重要性体现在三个方面。首先,我们的模型包含生理噪声。以往模型基于常微分方程,仅允许噪声或误差在观测层面进入。其次,通过使用创新方法和局部线性化滤波器,不仅可以估计参数,还能估计产生响应的系统的潜在状态。这些状态可以包括诸如神经元激活引发的血流诱导信号、脱氧血红蛋白、脑血流量和血容量等。最后,引入径向基函数作为参数模型来表示血流动力学方法中的任意时间输入序列,这对于理解与刺激间接相关的脑区可能至关重要。因此,第三,通过推断径向基参数,我们能够进行盲反卷积,这既允许重建最可能的血流动力学状态的动态,也能隐含地重建实验诱导的导致这些状态变化的潜在突触动态。从这项研究中,我们得出结论,尽管统计参数映射(SPM)中使用的标准离散卷积方法有用,但fMRI分析必须纳入非线性BOLD现象和非特定输入时间序列。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验