Suppr超能文献

使用遗传算法优化用于提取组织光学特性的光纤探头设计。

Use of genetic algorithms to optimize fiber optic probe design for the extraction of tissue optical properties.

作者信息

Palmer Gregory M, Ramanujam Nirmala

机构信息

Department of Radiation Oncology, Duke University, Durham, NC 27710, USA.

出版信息

IEEE Trans Biomed Eng. 2007 Aug;54(8):1533-5. doi: 10.1109/TBME.2006.889779.

Abstract

This paper outlines a framework by which the optimal illumination/collection geometry can be identified for a particular biomedical application. In this paper, this framework was used to identify the optimal probe geometry for the accurate determination of tissue optical properties representative of that in the ultraviolet-visible (UV-VIS) spectral range. An optimal probe geometry was identified which consisted of a single illumination and two collection fibers, one of which is insensitive to changes in scattering properties, and the other is insensitive to changes in the attenuation coefficient. Using this probe geometry in conjunction with a neural network algorithm, the optical properties could be extracted with root-mean-square errors of 0.30 cm(-1) for the reduced scattering coefficient (tested range of 3-40 cm(-1)), and 0.41 cm(-1) for the absorption coefficient (tested range of 0-80 cm(-1)).

摘要

本文概述了一个框架,通过该框架可以为特定的生物医学应用确定最佳的照明/采集几何结构。在本文中,该框架用于确定最佳探头几何结构,以准确测定代表紫外可见(UV-VIS)光谱范围内组织的光学特性。确定了一种最佳探头几何结构,它由一根照明光纤和两根采集光纤组成,其中一根对散射特性的变化不敏感,另一根对衰减系数的变化不敏感。将这种探头几何结构与神经网络算法结合使用,对于约化散射系数(测试范围为3-40 cm(-1)),可以以均方根误差0.30 cm(-1)提取光学特性;对于吸收系数(测试范围为0-80 cm(-1)),均方根误差为0.41 cm(-1)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验