Diller Anna, Prakash Shipra, Alia A, Gast Peter, Matysik Jörg, Jeschke Gunnar
Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
J Phys Chem B. 2007 Sep 6;111(35):10606-14. doi: 10.1021/jp072428r. Epub 2007 Aug 16.
During the photocycle of quinone-blocked photosynthetic reaction centers (RCs), photochemically induced dynamic nuclear polarization (photo-CIDNP) is produced by polarization transfer from the initially totally electron polarized electron pair and can be observed by 13C magic-angle spinning (MAS) NMR as a strong modification of signal intensities. The same processes creating net nuclear polarization open up light-dependent channels for polarization loss. This leads to coherent and incoherent enhanced signal recovery, in addition to the recovery due to light-independent longitudinal relaxation. Coherent mixing between electron and nuclear spin states due to pseudosecular hyperfine coupling within the radical pair state provides such a coherent loss channel for nuclear polarization. Another polarization transfer mechanism called differential relaxation, which is based on the long lifetime of the triplet state of the donor, provides an efficient incoherent relaxation path. In RCs of the purple bacterium Rhodobacter sphaeroides R26, the photochemical active channels allow for accelerated signal scanning by a factor of 5. Hence, photo-CIDNP MAS NMR provides the possibility to drive the NMR technique beyond the T1 limit.
在醌阻断的光合反应中心(RCs)的光循环过程中,光化学诱导动态核极化(光化学诱导动态核极化,photo-CIDNP)由最初完全电子极化的电子对的极化转移产生,并且可以通过13C魔角旋转(MAS)核磁共振观察到信号强度的强烈变化。产生净核极化的相同过程为极化损失开辟了光依赖通道。除了由于与光无关的纵向弛豫导致的恢复之外,这还导致了相干和非相干增强的信号恢复。由于自由基对状态内的赝偶极超精细耦合,电子和核自旋状态之间的相干混合为核极化提供了这样一个相干损失通道。另一种称为差分弛豫的极化转移机制,基于供体三重态的长寿命,提供了一条有效的非相干弛豫路径。在紫色细菌球形红杆菌R26的反应中心中,光化学活性通道允许信号扫描加速5倍。因此,光化学诱导动态核极化MAS核磁共振提供了将核磁共振技术驱动到超过T1极限的可能性。