Suppr超能文献

循环趋化因子能准确识别患有具有临床意义的动脉粥样硬化性心脏病的个体。

Circulating chemokines accurately identify individuals with clinically significant atherosclerotic heart disease.

作者信息

Ardigo Diego, Assimes Themistocles L, Fortmann Stephen P, Go Alan S, Hlatky Mark, Hytopoulos Evangelos, Iribarren Carlos, Tsao Philip S, Tabibiazar Raymond, Quertermous Thomas

机构信息

Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305, USA.

出版信息

Physiol Genomics. 2007 Nov 14;31(3):402-9. doi: 10.1152/physiolgenomics.00104.2007. Epub 2007 Aug 14.

Abstract

Serum inflammatory markers correlate with outcome and response to therapy in subjects with cardiovascular disease. However, current individual markers lack specificity for the diagnosis of coronary artery disease (CAD). We hypothesize that a multimarker proteomic approach measuring serum levels of vascular derived inflammatory biomarkers could reveal a "signature of disease" that can serve as a highly accurate method to assess for the presence of coronary atherosclerosis. We simultaneously measured serum levels of seven chemokines [CXCL10 (IP-10), CCL11 (eotaxin), CCL3 (MIP1 alpha), CCL2 (MCP1), CCL8 (MCP2), CCL7 (MCP3), and CCL13 (MCP4)] in 48 subjects with clinically significant CAD ("cases") and 44 controls from the ADVANCE Study. We applied three classification algorithms to identify the combination of variables that would best predict case-control status and assessed the diagnostic performance of these models with receiver operating characteristic (ROC) curves. The serum levels of six chemokines were significantly higher in cases compared with controls (P < 0.05). All three classification algorithms entered three chemokines in their final model, and only logistic regression selected clinical variables. Logistic regression produced the highest ROC of the three algorithms (AUC = 0.95; SE = 0.03), which was markedly better than the AUC for the logistic regression model of traditional risk factors of CAD without (AUC = 0.67; SE = 0.06) or with CRP (AUC = 0.68; SE = 0.06). A combination of serum levels of multiple chemokines identifies subjects with clinically significant atherosclerotic heart disease with a very high degree of accuracy. These results need to be replicated in larger cross-sectional studies and their prognostic value explored.

摘要

血清炎症标志物与心血管疾病患者的预后及治疗反应相关。然而,目前单个标志物对冠状动脉疾病(CAD)的诊断缺乏特异性。我们推测,一种测量血管源性炎症生物标志物血清水平的多标志物蛋白质组学方法可能会揭示一种“疾病特征”,可作为评估冠状动脉粥样硬化存在与否的高度准确方法。我们同时测量了48例具有临床显著CAD的受试者(“病例组”)和来自ADVANCE研究的44例对照者血清中7种趋化因子[CXCL10(IP-10)、CCL11(嗜酸性粒细胞趋化因子)、CCL3(MIP1α)、CCL2(MCP1)、CCL8(MCP2)、CCL7(MCP3)和CCL13(MCP4)]的水平。我们应用三种分类算法来确定最能预测病例对照状态的变量组合,并通过受试者工作特征(ROC)曲线评估这些模型的诊断性能。与对照组相比,病例组中6种趋化因子的血清水平显著更高(P<0.05)。所有三种分类算法在其最终模型中都纳入了三种趋化因子,只有逻辑回归选择了临床变量。逻辑回归在三种算法中产生了最高的ROC(AUC = 0.95;SE = 0.03),这明显优于不包含(AUC = 0.67;SE = 0.06)或包含CRP(AUC = 0.68;SE = 0.06)的CAD传统危险因素逻辑回归模型的AUC。多种趋化因子血清水平的组合能够以非常高的准确度识别患有临床显著动脉粥样硬化性心脏病的受试者。这些结果需要在更大规模的横断面研究中进行重复,并探索其预后价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验