Halperin Mitchell L, Cheema-Dhadli Surinder, Lin Shih-Hua, Kamel Kamel S
Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
Clin J Am Soc Nephrol. 2006 Sep;1(5):1049-53. doi: 10.2215/CJN.00100106. Epub 2006 Aug 2.
The PO2 at this site where erythropoietin release is regulated should vary only when the hemoglobin concentration changes in capillary blood. The kidney cortex is an ideal location for this O2 sensor for four reasons. First, it extracts a small proportion of the oxygen that is delivered in each liter of blood; this makes the PO2 signal easier to recognize. Second, there is a constant ratio of the work performed (consumption of O2) to the renal blood flow rate (delivery of O2). Third, the high renal blood flow rate improves diffusion of O2 from capillaries to this O2 receptor. Fourth, a high renal cortical PCO2 prevents an additional shift of the O2:hemoglobin dissociation curve by other factors from being a confounding variable. This suggests that the GFR and the renal blood flow rate should be examined in patients with unexplained anemia or erythrocytosis.
促红细胞生成素释放受调节部位的氧分压(PO2)仅在毛细血管血中血红蛋白浓度发生变化时才会改变。肾皮质是这种氧传感器的理想位置,原因有四点。其一,它从每升血液中摄取的氧气比例较小,这使得PO2信号更易于识别。其二,所做的功(氧气消耗)与肾血流量(氧气输送)之间存在恒定比例。其三,高肾血流量可促进氧气从毛细血管扩散至该氧受体。其四,高肾皮质二氧化碳分压(PCO2)可防止其他因素导致的氧合血红蛋白解离曲线额外偏移成为混杂变量。这表明,对于不明原因贫血或红细胞增多症患者,应检查其肾小球滤过率(GFR)和肾血流量。