Suppr超能文献

基于行为的机器人技术中的无模型执行监控

Model-free execution monitoring in behavior-based robotics.

作者信息

Pettersson Ola, Karlsson Lars, Saffiotti Alessandro

机构信息

Orebro University, SE-70182 Orebro, Sweden.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2007 Aug;37(4):890-901. doi: 10.1109/tsmcb.2007.895359.

Abstract

In the near future, autonomous mobile robots are expected to help humans by performing service tasks in many different areas, including personal assistance, transportation, cleaning, mining, or agriculture. In order to manage these tasks in a changing and partially unpredictable environment without the aid of humans, the robot must have the ability to plan its actions and to execute them robustly and safely. The robot must also have the ability to detect when the execution does not proceed as planned and to correctly identify the causes of the failure. An execution monitoring system allows the robot to detect and classify these failures. Most current approaches to execution monitoring in robotics are based on the idea of predicting the outcomes of the robot's actions by using some sort of predictive model and comparing the predicted outcomes with the observed ones. In contrary, this paper explores the use of model-free approaches to execution monitoring, that is, approaches that do not use predictive models. In this paper, we show that pattern recognition techniques can be applied to realize model-free execution monitoring by classifying observed behavioral patterns into normal or faulty execution. We investigate the use of several such techniques and verify their utility in a number of experiments involving the navigation of a mobile robot in indoor environments.

摘要

在不久的将来,自主移动机器人有望通过在许多不同领域执行服务任务来帮助人类,这些领域包括个人协助、运输、清洁、采矿或农业。为了在没有人类帮助的情况下在不断变化且部分不可预测的环境中管理这些任务,机器人必须具备规划其行动并稳健且安全地执行这些行动的能力。机器人还必须具备检测执行未按计划进行的情况并正确识别故障原因的能力。执行监测系统使机器人能够检测并分类这些故障。当前机器人技术中大多数执行监测方法基于这样一种理念,即通过使用某种预测模型预测机器人行动的结果,并将预测结果与观察到的结果进行比较。相反,本文探索使用无模型方法进行执行监测,即不使用预测模型的方法。在本文中,我们表明模式识别技术可通过将观察到的行为模式分类为正常或错误执行来应用于实现无模型执行监测。我们研究了几种此类技术的使用,并在涉及移动机器人在室内环境中导航的一系列实验中验证了它们的效用。

相似文献

1
Model-free execution monitoring in behavior-based robotics.
IEEE Trans Syst Man Cybern B Cybern. 2007 Aug;37(4):890-901. doi: 10.1109/tsmcb.2007.895359.
2
An improved kernel based extreme learning machine for robot execution failures.
ScientificWorldJournal. 2014;2014:906546. doi: 10.1155/2014/906546. Epub 2014 Apr 8.
3
Symbolic dynamic filtering and language measure for behavior identification of mobile robots.
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):647-59. doi: 10.1109/TSMCB.2011.2172419. Epub 2011 Nov 3.
4
Contact-state classification in human-demonstrated robot compliant motion tasks using the boosting algorithm.
IEEE Trans Syst Man Cybern B Cybern. 2010 Oct;40(5):1372-86. doi: 10.1109/TSMCB.2009.2038492. Epub 2010 Jan 26.
5
Language bootstrapping: learning word meanings from perception-action association.
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):660-71. doi: 10.1109/TSMCB.2011.2172420. Epub 2011 Nov 16.
6
Navigating a mobile robot by a traversability field histogram.
IEEE Trans Syst Man Cybern B Cybern. 2007 Apr;37(2):361-72. doi: 10.1109/tsmcb.2006.883870.
7
Applications of artificial intelligence in safe human-robot interactions.
IEEE Trans Syst Man Cybern B Cybern. 2011 Apr;41(2):448-59. doi: 10.1109/TSMCB.2010.2058103. Epub 2010 Aug 9.
8
SLAM algorithm applied to robotics assistance for navigation in unknown environments.
J Neuroeng Rehabil. 2010 Feb 17;7:10. doi: 10.1186/1743-0003-7-10.
9
Generalized sampling-based motion planners.
IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):855-66. doi: 10.1109/TSMCB.2010.2098438. Epub 2011 Jan 28.
10
Life-long optimization of the symbolic model of indoor environments for a mobile robot.
IEEE Trans Syst Man Cybern B Cybern. 2007 Oct;37(5):1290-304. doi: 10.1109/tsmcb.2007.900074.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验