Sato Yoshiaki, Nabeno Mika, Iwata Tatsuya, Tokutomi Satoru, Sakurai Minoru, Kandori Hideki
Department of Materials Science and Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
Biochemistry. 2007 Sep 11;46(36):10258-65. doi: 10.1021/bi701022v. Epub 2007 Aug 17.
The primary photochemistry of the blue-light sensor protein, phototropin, is adduct formation between the C4a atom of the flavin mononucleotide (FMN) chromophore and a nearby, reactive cysteine (Cys966), following decay of the triplet excited state of FMN. The distance between the C4a position of FMN and the sulfur atom of Cys966 is 4.2 A in the LOV2 domain of Adiantum neochrome 1 (neo1-LOV2), a fusion protein of phototropin containing the phytochrome chromophoric domain. We previously reported the presence of an unreactive fraction in neo1-LOV2 at low temperatures, which presumably originated from the heterogeneous environment of Cys966 [Iwata, T., Nozaki, D., Tokutomi, S., Kagawa, T., Wada, M., and Kandori, H. (2003) Biochemistry 42, 8183-8191]. The present study showed that (i) 28% forms an adduct at 77 K (state I), (ii) 50% forms an adduct at 150 K but not at 77 K (state II), and (iii) 22% does not form an adduct at 150 K (state III). By Fourier transform infrared (FTIR) spectroscopy, we observed the S-H stretching frequencies at 2570 and 2562 cm-1 for state I and at 2563 cm-1 for state II, suggesting that the microenvironment of the S-H group of Cys966 determines the reactivity at low temperatures. Adduct formation is more efficient for state I than for states II and III. Molecular dynamics simulation strongly suggests that the observed multiple structures originate from the isomeric forms of Cys966. We thus concluded that there are multiple local structures of FMN and cysteine in neo1-LOV2, each of which is thermally converted by protein fluctuation at physiological temperatures.
蓝光传感器蛋白向光素的初级光化学过程是,黄素单核苷酸(FMN)发色团的C4a原子与附近的活性半胱氨酸(Cys966)之间形成加合物,这一过程发生在FMN的三重激发态衰减之后。在新铁线蕨1的向光素融合蛋白(neo1-LOV2,该融合蛋白含有植物色素发色团结构域)的LOV2结构域中,FMN的C4a位置与Cys966的硫原子之间的距离为4.2埃。我们之前报道过,在低温下neo1-LOV2中存在无反应性组分,推测这是由Cys966的异质环境导致的[岩田,T.,野崎,D.,德富美,S.,香川,T.,和田,M.,以及神鸟,H.(2003年)《生物化学》42,8183 - 8191]。本研究表明:(i)28%在77 K时形成加合物(状态I);(ii)50%在150 K时形成加合物,但在77 K时不形成(状态II);(iii)22%在150 K时不形成加合物(状态III)。通过傅里叶变换红外(FTIR)光谱,我们观察到状态I下Cys966的S - H伸缩频率在2570和2562 cm⁻¹,状态II下在2563 cm⁻¹,这表明Cys966的S - H基团的微环境决定了低温下的反应活性。状态I的加合物形成比状态II和III更有效。分子动力学模拟有力地表明,观察到的多种结构源自Cys966的异构体形式。因此我们得出结论,neo1-LOV2中存在FMN和半胱氨酸的多种局部结构,每种结构在生理温度下通过蛋白质波动发生热转化。