Suppr超能文献

恒化器环境中的细菌生理学、调节与突变适应

Bacterial physiology, regulation and mutational adaptation in a chemostat environment.

作者信息

Ferenci Thomas

机构信息

School of Molecular and Microbial Biosciences G08, The University of Sydney, NSW 2006, Australia.

出版信息

Adv Microb Physiol. 2008;53:169-229. doi: 10.1016/S0065-2911(07)53003-1.

Abstract

The chemostat was devised over 50 years ago and rapidly adopted for studies of bacterial physiology and mutation. Despite the long history and earlier analyses, the complexity of events in continuous cultures is only now beginning to be resolved. The application of techniques for following regulatory and mutational changes and the identification of mutated genes in chemostat populations has provided new insights into bacterial behaviour. Inoculation of bacteria into a chemostat culture results in a population competing for a limiting amount of a particular resource. Any utilizable carbon source or ion can be a limiting nutrient and bacteria respond to limitation through a regulated nutrient-specific hunger response. In addition to transcriptional responses to nutrient limitation, a second regulatory influence in a chemostat culture is the reduced growth rate fixed by the dilution rate in individual experiments. Sub-maximal growth rates and hunger result in regulation involving sigma factors and alarmones like cAMP and ppGpp. Reduced growth rate also results in increased mutation frequencies. The combination of a strongly selective environment (where mutants able to compete for limiting nutrient have a major fitness advantage) and elevated mutation rates (both endogenous and through the secondary enrichment of mutators) results in a population that changes rapidly and persistently over many generations. Contrary to common belief, the chemostat environment is never in "steady state" with fixed bacterial characteristics usable for clean comparisons of physiological or regulatory states. Adding to the complexity, chemostat populations do not simply exhibit a succession of mutational sweeps leading to a dominant winner clone. Instead, within 100 generations large populations become heterogeneous and evolving bacteria adopt alternative, parallel fitness strategies. Transport physiology, metabolism and respiration, as well as growth yields, are highly diverse in chemostat-evolved bacteria. The rich assortment of changes in an evolving chemostat provides an excellent experimental system for understanding bacterial evolution. The adaptive radiation or divergence of populations into a collection of individuals with alternative solutions to the challenge of chemostat existence provides an ideal model system for testing evolutionary and ecological theories on adaptive radiations and the generation of bacterial diversity.

摘要

恒化器是在50多年前设计出来的,并迅速被用于细菌生理学和突变研究。尽管其历史悠久且有早期分析,但连续培养中事件的复杂性直到现在才开始得到解决。用于追踪调控和突变变化的技术以及恒化器群体中突变基因的鉴定,为细菌行为提供了新的见解。将细菌接种到恒化器培养物中会导致群体竞争特定资源的有限量。任何可利用的碳源或离子都可以是限制营养物,细菌通过受调控的特定营养物饥饿反应来应对限制。除了对营养物限制的转录反应外,恒化器培养中的第二个调控影响是在单个实验中由稀释率固定的降低的生长速率。亚最大生长速率和饥饿导致涉及σ因子和警报素(如cAMP和ppGpp)的调控。生长速率降低也会导致突变频率增加。强烈选择性环境(能够竞争限制营养物的突变体具有主要的适应性优势)和升高的突变率(内源性以及通过突变体的二次富集)的结合导致群体在许多代中迅速且持续地变化。与普遍看法相反,恒化器环境从未处于具有可用于生理或调控状态的清晰比较的固定细菌特征的“稳态”。更复杂的是,恒化器群体并不简单地表现出一系列导致优势获胜克隆的突变清除。相反,在100代内,大群体变得异质,进化的细菌采用替代的、并行的适应性策略。在恒化器进化的细菌中,转运生理学、代谢和呼吸以及生长产量高度多样。不断进化的恒化器中丰富多样的变化为理解细菌进化提供了一个极好的实验系统。群体的适应性辐射或分化为应对恒化器生存挑战具有替代解决方案的个体集合,为测试关于适应性辐射和细菌多样性产生的进化和生态理论提供了一个理想的模型系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验