Department of Ecology and Evolution, Stony Brook University, 650 Life Sciences Building, Stony Brook, NY, 11794, USA.
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
BMC Evol Biol. 2018 May 18;18(1):72. doi: 10.1186/s12862-018-1191-4.
Adaptive responses to nutrient limitation involve mutations that increase the efficiency of usage or uptake of the limiting nutrient. However, starvation of different nutrients has contrasting effects on physiology, resulting in different evolutionary responses. Most studies performed to understand these evolutionary responses have focused only on macronutrient limitation. Hence our understanding of adaptation under limitation of other forms of nutrients is limited. In this study, we compared the evolutionary response in populations evolving under growth-limiting conditions for a macronutrient and a major cation.
We evolved eight populations of E. coli in nutrient-limited chemostats for 400 generations to identify the genetic basis of the mechanisms involved in efficient usage of two nutrients: nitrogen and magnesium. Our population genomic sequencing work, based on this study and previous work, allowed us to identify targets of selection under these nutrient limiting conditions. Global transcriptional regulators glnGL were targets of selection under nitrogen starvation, while proteins involved in outer-membrane biogenesis (genes from the lpt operon) were targets of selection under magnesium starvation. The protein involved in cell-cycle arrest (yhaV) was a target of selection in both environments. We re-constructed specific mutants to analyze the effect of individual mutations on fitness in nutrient limiting conditions in chemostats and in batch cultures. We further demonstrated that adaptation to nitrogen starvation proceeds via a nutrient specific mechanism, while that to magnesium starvation involves a more general mechanism.
Our results show two different forms of adaptive strategies under limitation of nutrients that effect cellular physiology in different ways. Adaptation to nitrogen starvation proceeds by upregulation of transcriptional regulator glnG and subsequently of transporter protein amtB, both of which results in increased nitrogen scavenging ability of the cell. On the other hand, adaptation to magnesium starvation proceeds via the restructuring of the cell outer-membrane, allowing magnesium to be redistributed to other biological processes. Also, adaptation to the chemostat environment involves selection for loss of function mutations in genes that under nutrient-limiting conditions interfere with continuous growth.
适应营养限制的反应涉及增加限制营养物使用或摄取效率的突变。然而,不同营养素的饥饿对生理有相反的影响,导致不同的进化反应。为了理解这些进化反应,大多数研究都只集中在研究大量营养素的限制上。因此,我们对其他形式的营养素限制下的适应的理解是有限的。在这项研究中,我们比较了在以大量营养素和主要阳离子为生长限制条件的恒化器中进化的种群的进化反应。
我们在营养限制的恒化器中使 8 个大肠杆菌种群进化了 400 代,以确定参与有效利用两种营养素(氮和镁)的机制的遗传基础。基于这项研究和以前的工作,我们的群体基因组测序工作使我们能够确定在这些营养限制条件下选择的目标。在氮饥饿下,全局转录调节因子 glnGL 是选择的目标,而外膜生物发生(lpt 操纵子的基因)相关蛋白是镁饥饿下选择的目标。参与细胞周期停滞的蛋白质(yhaV)是两种环境下选择的目标。我们重新构建了特定的突变体,以分析在恒化器和分批培养中营养限制条件下单个突变对适应性的影响。我们进一步证明,对氮饥饿的适应是通过特定的营养机制进行的,而对镁饥饿的适应则涉及更一般的机制。
我们的结果表明,在以不同方式影响细胞生理的营养素限制下,有两种不同形式的适应性策略。对氮饥饿的适应是通过上调转录调节因子 glnG 然后上调转运蛋白 amtB 进行的,这两者都导致细胞对氮的摄取能力增强。另一方面,对镁饥饿的适应是通过细胞外膜的重构进行的,这使得镁可以重新分配到其他生物过程中。此外,对恒化器环境的适应涉及对在营养限制条件下干扰连续生长的基因的功能丧失突变的选择。