文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ADaCGH:一个用于分析 aCGH 数据的并行化网络应用程序和 R 包。

ADaCGH: A parallelized web-based application and R package for the analysis of aCGH data.

机构信息

Structural Biology and Biocomputing Programme, Spanish National Cancer Center, Madrid, Spain.

出版信息

PLoS One. 2007 Aug 15;2(8):e737. doi: 10.1371/journal.pone.0000737.


DOI:10.1371/journal.pone.0000737
PMID:17710137
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC1940324/
Abstract

BACKGROUND: Copy number alterations (CNAs) in genomic DNA have been associated with complex human diseases, including cancer. One of the most common techniques to detect CNAs is array-based comparative genomic hybridization (aCGH). The availability of aCGH platforms and the need for identification of CNAs has resulted in a wealth of methodological studies. METHODOLOGY/PRINCIPAL FINDINGS: ADaCGH is an R package and a web-based application for the analysis of aCGH data. It implements eight methods for detection of CNAs, gains and losses of genomic DNA, including all of the best performing ones from two recent reviews (CBS, GLAD, CGHseg, HMM). For improved speed, we use parallel computing (via MPI). Additional information (GO terms, PubMed citations, KEGG and Reactome pathways) is available for individual genes, and for sets of genes with altered copy numbers. CONCLUSIONS/SIGNIFICANCE: ADACGH represents a qualitative increase in the standards of these types of applications: a) all of the best performing algorithms are included, not just one or two; b) we do not limit ourselves to providing a thin layer of CGI on top of existing BioConductor packages, but instead carefully use parallelization, examining different schemes, and are able to achieve significant decreases in user waiting time (factors up to 45x); c) we have added functionality not currently available in some methods, to adapt to recent recommendations (e.g., merging of segmentation results in wavelet-based and CGHseg algorithms); d) we incorporate redundancy, fault-tolerance and checkpointing, which are unique among web-based, parallelized applications; e) all of the code is available under open source licenses, allowing to build upon, copy, and adapt our code for other software projects.

摘要

背景:基因组 DNA 中的拷贝数改变(CNAs)与包括癌症在内的复杂人类疾病有关。检测 CNAs 的最常见技术之一是基于阵列的比较基因组杂交(aCGH)。aCGH 平台的可用性和识别 CNAs 的需求导致了大量方法学研究的出现。

方法/主要发现:ADaCGH 是一个用于分析 aCGH 数据的 R 包和基于网络的应用程序。它实现了八种用于检测 CNAs、基因组 DNA 增益和损失的方法,包括来自最近两篇综述(CBS、GLAD、CGHseg、HMM)的所有表现最佳的方法。为了提高速度,我们使用并行计算(通过 MPI)。对于个体基因和具有改变拷贝数的基因集,还可以获得其他信息(GO 术语、PubMed 引文、KEGG 和 Reactome 途径)。

结论/意义:ADaCGH 代表了这些类型的应用程序标准的质的提高:a)包括所有表现最佳的算法,而不仅仅是一两个;b)我们不仅限于在现有的 BioConductor 包之上提供 CGI 的薄层,而是仔细使用并行化,检查不同的方案,并能够显著减少用户等待时间(高达 45 倍);c)我们添加了一些方法目前没有的功能,以适应最近的建议(例如,基于小波和 CGHseg 算法的分割结果的合并);d)我们纳入了冗余、容错和检查点,这在基于网络的并行化应用程序中是独一无二的;e)所有代码都在开源许可证下可用,允许在其他软件项目中构建、复制和改编我们的代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/f18c73e904fd/pone.0000737.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/e9c8e9c3c089/pone.0000737.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/5c315d53a5e9/pone.0000737.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/8dd0ece2d9d7/pone.0000737.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/0358faf84e43/pone.0000737.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/f18c73e904fd/pone.0000737.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/e9c8e9c3c089/pone.0000737.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/5c315d53a5e9/pone.0000737.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/8dd0ece2d9d7/pone.0000737.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/0358faf84e43/pone.0000737.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df36/1940324/f18c73e904fd/pone.0000737.g005.jpg

相似文献

[1]
ADaCGH: A parallelized web-based application and R package for the analysis of aCGH data.

PLoS One. 2007-8-15

[2]
Asterias: integrated analysis of expression and aCGH data using an open-source, web-based, parallelized software suite.

Nucleic Acids Res. 2007-7

[3]
CGHnormaliter: a Bioconductor package for normalization of array CGH data with many CNAs.

Bioinformatics. 2010-4-23

[4]
GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest.

BMC Bioinformatics. 2007-9-3

[5]
Algorithms for calling gains and losses in array CGH data.

Methods Mol Biol. 2009

[6]
VegaMC: a R/bioconductor package for fast downstream analysis of large array comparative genomic hybridization datasets.

Bioinformatics. 2012-7-18

[7]
SignS: a parallelized, open-source, freely available, web-based tool for gene selection and molecular signatures for survival and censored data.

BMC Bioinformatics. 2008-1-21

[8]
Finding recurrent copy number alterations preserving within-sample homogeneity.

Bioinformatics. 2011-8-25

[9]
Flexible and accurate detection of genomic copy-number changes from aCGH.

PLoS Comput Biol. 2007-6

[10]
A GC-wave correction algorithm that improves the analytical performance of aCGH.

J Mol Diagn. 2012-8-23

引用本文的文献

[1]
medplot: a web application for dynamic summary and analysis of longitudinal medical data based on R.

PLoS One. 2015-4-2

[2]
Autoregressive higher-order hidden Markov models: exploiting local chromosomal dependencies in the analysis of tumor expression profiles.

PLoS One. 2014-6-23

[3]
Comparative genomics of Helicobacter pylori strains of China associated with different clinical outcome.

PLoS One. 2012-6-6

[4]
Parsimonious higher-order hidden Markov models for improved array-CGH analysis with applications to Arabidopsis thaliana.

PLoS Comput Biol. 2012-1-12

[5]
A survey of analysis software for array-comparative genomic hybridisation studies to detect copy number variation.

Hum Genomics. 2010-8

[6]
FACADE: a fast and sensitive algorithm for the segmentation and calling of high resolution array CGH data.

Nucleic Acids Res. 2010-6-15

[7]
waviCGH: a web application for the analysis and visualization of genomic copy number alterations.

Nucleic Acids Res. 2010-5-27

[8]
Intragenic GNAS deletion involving exon A/B in pseudohypoparathyroidism type 1A resulting in an apparent loss of exon A/B methylation: potential for misdiagnosis of pseudohypoparathyroidism type 1B.

J Clin Endocrinol Metab. 2009-12-11

[9]
A computational procedure to identify significant overlap of differentially expressed and genomic imbalanced regions in cancer datasets.

Nucleic Acids Res. 2009-8

[10]
Combining chromosomal arm status and significantly aberrant genomic locations reveals new cancer subtypes.

Cancer Inform. 2009

本文引用的文献

[1]
Computational methods for the analysis of array comparative genomic hybridization.

Cancer Inform. 2007-2-10

[2]
Flexible and accurate detection of genomic copy-number changes from aCGH.

PLoS Comput Biol. 2007-6

[3]
A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array.

BMC Bioinformatics. 2007-5-3

[4]
ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling.

Nucleic Acids Res. 2007-7

[5]
IDconverter and IDClight: conversion and annotation of gene and protein IDs.

BMC Bioinformatics. 2007-1-10

[6]
Scientific software development is not an oxymoron.

PLoS Comput Biol. 2006-9-8

[7]
CAPweb: a bioinformatics CGH array Analysis Platform.

Nucleic Acids Res. 2006-7-1

[8]
CGHScan: finding variable regions using high-density microarray comparative genomic hybridization data.

BMC Genomics. 2006-4-25

[9]
High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays.

Proc Natl Acad Sci U S A. 2006-3-21

[10]
BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data.

Bioinformatics. 2006-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索