Suppr超能文献

生物Fe2+氧化流化床反应器性能及堆浸过程中Fe3+循环的控制:基于人工神经网络的模型

Biologically Fe2+ oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle during heap bioleaching: an artificial neural network-based model.

作者信息

Ozkaya Bestamin, Sahinkaya Erkan, Nurmi Pauliina, Kaksonen Anna H, Puhakka Jaakko A

机构信息

Institute of Environmental Engineering and Biotechnology, Tampere University of Technology, P.O. Box 541, 33101, Tampere, Finland.

出版信息

Bioprocess Biosyst Eng. 2008 Feb;31(2):111-7. doi: 10.1007/s00449-007-0153-9. Epub 2007 Aug 22.

Abstract

The performance of a biological Fe(2+) oxidizing fluidized bed reactor (FBR) was modeled by a popular neural network-back-propagation algorithm over a period of 220 days at 37 degrees C under different operational conditions. A method is proposed for modeling Fe(3+) production in FBR and thereby managing the regeneration of Fe(3+) for heap leaching application, based on an artificial neural network-back-propagation algorithm. Depending on output value, relevant control strategies and actions are activated, and Fe(3+) production in FBR was considered as a critical output parameter. The modeling of effluent Fe(3+) concentration was very successful, and an excellent match was obtained between the measured and the predicted concentrations.

摘要

在37摄氏度下,在不同运行条件下,使用流行的神经网络反向传播算法对生物Fe(2+)氧化流化床反应器(FBR)220天的运行性能进行了建模。提出了一种基于人工神经网络反向传播算法的FBR中Fe(3+)生成建模方法,从而管理用于堆浸应用的Fe(3+)再生。根据输出值激活相关控制策略和行动,FBR中的Fe(3+)生成被视为关键输出参数。出水Fe(3+)浓度的建模非常成功,测量浓度与预测浓度之间获得了极好的匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验