Suppr超能文献

相似文献

5
Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria.
J Biol Chem. 2015 Nov 13;290(46):27594-603. doi: 10.1074/jbc.M115.680272. Epub 2015 Sep 23.
6
Site-specific effects of zinc on the activity of family II pyrophosphatase.
Biochemistry. 2004 Nov 16;43(45):14395-402. doi: 10.1021/bi048470j.
9
Inorganic pyrophosphatases of Family II-two decades after their discovery.
FEBS Lett. 2017 Oct;591(20):3225-3234. doi: 10.1002/1873-3468.12877. Epub 2017 Oct 17.
10
Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity.
Biochemistry. 2005 Feb 15;44(6):2088-96. doi: 10.1021/bi048429g.

引用本文的文献

1
The inorganic pyrophosphatases of microorganisms: a structural and functional review.
PeerJ. 2024 Jun 24;12:e17496. doi: 10.7717/peerj.17496. eCollection 2024.
4
Residue Network Involved in the Allosteric Regulation of Cystathionine β-Synthase Domain-Containing Pyrophosphatase by Adenine Nucleotides.
ACS Omega. 2019 Sep 10;4(13):15549-15559. doi: 10.1021/acsomega.9b01879. eCollection 2019 Sep 24.
5
Chromophorylation of cyanobacteriochrome Slr1393 from sp. PCC 6803 is regulated by protein Slr2111 through allosteric interaction.
J Biol Chem. 2018 Nov 16;293(46):17705-17715. doi: 10.1074/jbc.RA118.003830. Epub 2018 Sep 21.
6
Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria.
J Biol Chem. 2015 Nov 13;290(46):27594-603. doi: 10.1074/jbc.M115.680272. Epub 2015 Sep 23.
7
Cystathionine β-synthase (CBS) domains confer multiple forms of Mg2+-dependent cooperativity to family II pyrophosphatases.
J Biol Chem. 2014 Aug 15;289(33):22865-22876. doi: 10.1074/jbc.M114.589473. Epub 2014 Jul 1.
8
Pyrophosphate-fueled Na+ and H+ transport in prokaryotes.
Microbiol Mol Biol Rev. 2013 Jun;77(2):267-76. doi: 10.1128/MMBR.00003-13.
10
The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)(8) barrel enzymes.
Crit Rev Biochem Mol Biol. 2012 May-Jun;47(3):250-63. doi: 10.3109/10409238.2012.656843. Epub 2012 Feb 15.

本文引用的文献

1
Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5.
Nat Struct Mol Biol. 2007 Jan;14(1):60-7. doi: 10.1038/nsmb1188. Epub 2006 Dec 31.
2
A sensor for intracellular ionic strength.
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10624-9. doi: 10.1073/pnas.0603871103. Epub 2006 Jun 30.
3
Nucleotides bind to the C-terminus of ClC-5.
Biochem J. 2006 Sep 1;398(2):289-94. doi: 10.1042/BJ20060142.
4
Crystal structure of the cytoplasmic domain of the chloride channel ClC-0.
Structure. 2006 Feb;14(2):299-307. doi: 10.1016/j.str.2005.10.008.
5
CBS domains: structure, function, and pathology in human proteins.
Am J Physiol Cell Physiol. 2005 Dec;289(6):C1369-78. doi: 10.1152/ajpcell.00282.2005.
6
Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
J Biol Chem. 2005 Sep 16;280(37):32452-8. doi: 10.1074/jbc.M502890200. Epub 2005 Jul 18.
7
Physiology of the thermophilic acetogen Moorella thermoacetica.
Res Microbiol. 2004 Dec;155(10):869-83. doi: 10.1016/j.resmic.2004.10.002.
9
Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies.
Physiol Genomics. 2004 Sep 16;19(1):74-83. doi: 10.1152/physiolgenomics.00070.2004. Epub 2004 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验