Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
Microbiol Mol Biol Rev. 2013 Jun;77(2):267-76. doi: 10.1128/MMBR.00003-13.
In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H(+) transport across biological membranes (H(+)-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na(+) (Na(+)-pyrophosphatase) or both Na(+) and H(+) (Na(+),H(+)-pyrophosphatase). Both these transporters require Na(+) for pyrophosphate hydrolysis and are further activated by K(+). The determination of the three-dimensional structures of H(+)- and Na(+)-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms.
在其早期历史中,生命似乎依赖焦磷酸而不是 ATP 作为能量来源。长期以来,在原核生物、植物和原生生物中,人们已经知道了将焦磷酸水解与生物膜上的主动 H(+)转运偶联的古老膜焦磷酸酶(H(+)-焦磷酸酶)。最近的研究已经确定了两种与进化相关且广泛存在的原核生物遗迹,它们可以泵送 Na(+)(Na(+)-焦磷酸酶)或同时泵送 Na(+)和 H(+)(Na(+),H(+)-焦磷酸酶)。这两种转运蛋白都需要 Na(+)来水解焦磷酸,并进一步被 K(+)激活。H(+)-和 Na(+)-焦磷酸酶的三维结构的确定是这些阳离子泵研究的另一个最近的突破。结构和功能研究强调了膜焦磷酸酶的阳离子特异性的主要决定因素,以及它们在构建转基因抗应激生物中的潜在用途。