Suppr超能文献

通过修改皮质自上而下信号进行的知觉学习。

Perceptual learning via modification of cortical top-down signals.

作者信息

Schäfer Roland, Vasilaki Eleni, Senn Walter

机构信息

Department of Physiology, University of Bern, Bern, Switzerland.

出版信息

PLoS Comput Biol. 2007 Aug;3(8):e165. doi: 10.1371/journal.pcbi.0030165.

Abstract

The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning.

摘要

初级视觉皮层(V1)预先连线以促进对行为上重要的视觉特征的提取。例如,V1中的共线边缘检测器相互增强,以改善在嘈杂背景下对线条的感知。然而,当受试者必须区分不同线段的亮度时,这种有助于线条提取的预先连线却不利。如何通过无监督练习在一项任务中得到改善,而在另一项任务中又不会变差呢?传统的感知学习观点认为,练习通过突触修饰调节到V1上或V1内的前馈输入流。然而,V1的任何重新布线都会使与训练任务不同的其他感知能力恶化。我们提出了一个通用的神经元模型,表明感知学习可以以任务特定的方式调节到V1的自上而下的输入,同时前馈和侧向通路保持完整。与生物学数据一致,该模型解释了如何通过自上而下招募递归抑制和自上而下诱导V1内神经元增益增加来改善上下文依赖的亮度辨别。抑制和神经元增益的自上而下调制都被认为是皮层微电路的普遍特征,它们能够实现感知学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62e4/1963503/5dbee67ef19f/pcbi.0030165.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验