Petrov Alexander A, Dosher Barbara Anne, Lu Zhong-Lin
Department of Cognitive Sciences, University of California, Irvine, CA 92697, USA.
Vision Res. 2006 Oct;46(19):3177-97. doi: 10.1016/j.visres.2006.03.022. Epub 2006 May 12.
The role of feedback in perceptual learning is probed in an orientation discrimination experiment under destabilizing non-stationary conditions, and explored in a neural-network model. Experimentally, perceptual learning was examined with periodic alteration of a strong external noise context. The speed of learning, the performance loss at each change in external noise context (switch cost), and the asymptotic accuracy d' without feedback were very similar or identical to those with feedback. However, lack of feedback led to higher decision bias (error responses matching the external noise context). In the model, the stimulus representations are constant, whereas the read-out connections to a decision unit learn by a Hebbian plasticity rule that may be augmented by additional feedback input and criterion control of decision bias.
在不稳定的非平稳条件下的方向辨别实验中,对反馈在知觉学习中的作用进行了探究,并在神经网络模型中进行了探索。在实验中,通过周期性改变强烈的外部噪声环境来检验知觉学习。学习速度、外部噪声环境每次变化时的性能损失(切换成本)以及无反馈时的渐近准确性d'与有反馈时非常相似或相同。然而,缺乏反馈会导致更高的决策偏差(与外部噪声环境匹配的错误反应)。在该模型中,刺激表征是恒定的,而与决策单元的读出连接通过赫布可塑性规则学习,该规则可能会因额外的反馈输入和决策偏差的标准控制而增强。