Suppr超能文献

Human newborn polymorphonuclear neutrophils exhibit decreased levels of MyD88 and attenuated p38 phosphorylation in response to lipopolysaccharide.

作者信息

Al-Hertani Walla, Yan Sen Rong, Byers David M, Bortolussi Robert

机构信息

Department of Microbiology, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada.

出版信息

Clin Invest Med. 2007;30(2):E44-53. doi: 10.25011/cim.v30i2.979.

Abstract

PURPOSE

Human newborn infants have increased susceptibility to gram-negative bacterial infection. Since lipopolysaccharide (LPS) primes polymorphonuclear neutrophils (PMN) to enhance host defense functions, we investigated its effect on adult and newborn PMN in vitro.

METHODS

PMN were isolated from blood of healthy adults and umbilical cords of full term newborns using dextran and Ficoll-Paque gradient sedimentation. Gel electrophoresis and Western blotting of membranes were used to probe for Mitogen-Activated Protein (MAP) kinase p38 phosphorylation, Toll-like Receptor-4 (TLR-4) and Myeloid Differentiation Factor 88 (MyD88) on isolated PMN membranes using specific antibodies. LPS induced degranulation was assessed using CD66 expression on PMN measured by flow cytometry.

RESULTS

We show that p38 phosphorylation in newborn PMN is attenuated in response to LPS stimulation even though adult and newborn PMN have similar amounts of p38 protein. The degree of attenuation in newborn PMN is dependent on the osmolarity of the medium. In addition, LPS-induced degranulation, a process that is p38 dependent, was also absent in newborn PMN. Although the LPS receptor TLR-4 is present at similar levels on newborn and adult PMN, its downstream adaptor protein MyD88 was significantly diminished in newborn PMN compared to adult cells.

CONCLUSIONS

Although the mechanism of PMN priming by LPS is not fully understood, our results suggest that MyD88 and p38 phosphorylation are important pathways in the process and contribute to attenuated response of newborn PMN to LPS in vitro.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验