Suppr超能文献

硝基脂肪酸与谷胱甘肽和半胱氨酸的反应。通过迈克尔加成反应进行硫醇烷基化的动力学分析。

Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.

作者信息

Baker Laura M S, Baker Paul R S, Golin-Bisello Franca, Schopfer Francisco J, Fink Mitchell, Woodcock Steven R, Branchaud Bruce P, Radi Rafael, Freeman Bruce A

机构信息

Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.

出版信息

J Biol Chem. 2007 Oct 19;282(42):31085-93. doi: 10.1074/jbc.M704085200. Epub 2007 Aug 25.

Abstract

Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.

摘要

一氧化氮衍生物质对脂肪酸的硝化作用会产生亲电产物,这些产物会与蛋白质硫醇加合,从而引起蛋白质功能和分布的变化。在健康人体血液中可检测到蛋白质和还原型谷胱甘肽(GSH)的硝基脂肪酸加合物。动力学和质谱分析表明,油酸(OA-NO2)和亚油酸(LNO2)的硝基烯烃衍生物通过迈克尔加成反应与GSH和半胱氨酸迅速反应。通过停流分光光度法测定,在pH 7.4和37℃条件下,OA-NO2和LNO2与GSH反应的二级速率常数分别为183 M(-1)s(-1)和355 M(-1)s(-1)。这些反应速率显著高于GSH与过氧化氢以及包括8-异前列腺素A2和15-脱氧-Δ(12,14)-前列腺素J2在内的非硝化亲电脂肪酸反应的速率。将反应pH从7.4提高到8.9会增强硫醇与OA-NO2和LNO2反应的表观二级速率常数,表明其反应活性依赖于GSH的硫醇盐阴离子。随着目标硫醇的pKa增加,硝基烯烃与硫醇的反应速率降低。增加去污剂辛基-β-D-吡喃葡萄糖苷的浓度会降低硝基烯烃与GSH的反应速率,这表明硝基脂肪酸形成胶束或膜结构会限制其与极性更强的亲核靶点的迈克尔反应活性。总的来说,这些结果表明硝基脂肪酸对硫醇的可逆加合是硝基脂肪酸对蛋白质功能进行可逆翻译后调控的一种机制。

相似文献

1
Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.
J Biol Chem. 2007 Oct 19;282(42):31085-93. doi: 10.1074/jbc.M704085200. Epub 2007 Aug 25.
2
The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid.
J Biol Chem. 2017 Jan 27;292(4):1145-1159. doi: 10.1074/jbc.M116.756288. Epub 2016 Dec 6.
3
Reversible post-translational modification of proteins by nitrated fatty acids in vivo.
J Biol Chem. 2006 Jul 21;281(29):20450-63. doi: 10.1074/jbc.M602814200. Epub 2006 May 8.
4
Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor.
J Biol Chem. 2005 May 13;280(19):19289-97. doi: 10.1074/jbc.M414689200. Epub 2005 Mar 11.
6
Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes.
Redox Biol. 2021 Jan;38:101756. doi: 10.1016/j.redox.2020.101756. Epub 2020 Oct 12.
8
Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis.
Redox Biol. 2019 Feb;21:101050. doi: 10.1016/j.redox.2018.11.008. Epub 2018 Nov 22.
9
Nitro-fatty acid metabolome: saturation, desaturation, beta-oxidation, and protein adduction.
J Biol Chem. 2009 Jan 16;284(3):1461-73. doi: 10.1074/jbc.M802298200. Epub 2008 Nov 17.
10
Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.
Free Radic Biol Med. 2016 Aug;97:148-157. doi: 10.1016/j.freeradbiomed.2016.05.019. Epub 2016 May 19.

引用本文的文献

1
Regio- and Stereoselective Synthesis of Nitro-fatty Acids as NRF2 Pathway Activators Working under Ambient or Hypoxic Conditions.
J Med Chem. 2025 Jun 12;68(11):12172-12184. doi: 10.1021/acs.jmedchem.5c00982. Epub 2025 May 26.
2
Human glutathione transferases catalyze the reaction between glutathione and nitrooleic acid.
J Biol Chem. 2025 Apr;301(4):108362. doi: 10.1016/j.jbc.2025.108362. Epub 2025 Feb 28.
3
Development of nitroalkene-based inhibitors to target STING-dependent inflammation.
Redox Biol. 2024 Aug;74:103202. doi: 10.1016/j.redox.2024.103202. Epub 2024 May 21.
5
Functions of nitric oxide-mediated post-translational modifications under abiotic stress.
Front Plant Sci. 2023 Mar 30;14:1158184. doi: 10.3389/fpls.2023.1158184. eCollection 2023.
7
Fatty acid nitroalkene reversal of established lung fibrosis.
Redox Biol. 2022 Apr;50:102226. doi: 10.1016/j.redox.2021.102226. Epub 2021 Dec 29.
8
Nitro Fatty Acids (NO-FAs): An Emerging Class of Bioactive Fatty Acids.
Molecules. 2021 Dec 13;26(24):7536. doi: 10.3390/molecules26247536.
9
Structural Modifications Yield Novel Insights Into the Intriguing Pharmacodynamic Potential of Anti-inflammatory Nitro-Fatty Acids.
Front Pharmacol. 2021 Nov 18;12:715076. doi: 10.3389/fphar.2021.715076. eCollection 2021.
10
Chemoproteomic profiling reveals cellular targets of nitro-fatty acids.
Redox Biol. 2021 Oct;46:102126. doi: 10.1016/j.redox.2021.102126. Epub 2021 Sep 7.

本文引用的文献

1
Synthesis, isomer characterization, and anti-inflammatory properties of nitroarachidonate.
Biochemistry. 2007 Apr 17;46(15):4645-53. doi: 10.1021/bi602652j. Epub 2007 Mar 21.
3
Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines.
Nature. 2007 Feb 1;445(7127):541-5. doi: 10.1038/nature05544. Epub 2007 Jan 21.
4
TRP channel activation by reversible covalent modification.
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19564-8. doi: 10.1073/pnas.0609598103. Epub 2006 Dec 12.
5
Mechanistic studies of the Nrf2-Keap1 signaling pathway.
Drug Metab Rev. 2006;38(4):769-89. doi: 10.1080/03602530600971974.
6
Protein adducts generated from products of lipid oxidation: focus on HNE and one.
Drug Metab Rev. 2006;38(4):651-75. doi: 10.1080/03602530600959508.
7
Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3.
J Biol Chem. 2007 Jan 26;282(4):2529-37. doi: 10.1074/jbc.M607622200. Epub 2006 Nov 25.
9
Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators.
J Biol Chem. 2006 Nov 24;281(47):35686-98. doi: 10.1074/jbc.M603357200. Epub 2006 Aug 3.
10
Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants.
Toxicol Sci. 2006 Dec;94(2):240-55. doi: 10.1093/toxsci/kfl066. Epub 2006 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验