Gil Magdalena, Graña Martín, Schopfer Francisco J, Wagner Tristan, Denicola Ana, Freeman Bruce A, Alzari Pedro M, Batthyány Carlos, Durán Rosario
Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Uruguay; Unidad de Bioquímica y Proteómica Analíticas, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Uruguay.
Unidad de Bioinformática, Institut Pasteur de Montevideo, Uruguay.
Free Radic Biol Med. 2013 Dec;65:150-161. doi: 10.1016/j.freeradbiomed.2013.06.021. Epub 2013 Jun 20.
PknG from Mycobacterium tuberculosis is a Ser/Thr protein kinase that regulates key metabolic processes within the bacterial cell as well as signaling pathways from the infected host cell. This multidomain protein has a conserved canonical kinase domain with N- and C-terminal flanking regions of unclear functional roles. The N-terminus harbors a rubredoxin-like domain (Rbx), a bacterial protein module characterized by an iron ion coordinated by four cysteine residues. Disruption of the Rbx-metal binding site by simultaneous mutations of all the key cysteine residues significantly impairs PknG activity. This encouraged us to evaluate the effect of a nitro-fatty acid (9- and 10-nitro-octadeca-9-cis-enoic acid; OA-NO2) on PknG activity. Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic residues of target proteins (i.e., Cys and His), modulating protein function and subcellular distribution in a reversible manner. Here, we show that OA-NO2 inhibits kinase activity by covalently adducting PknG remote from the catalytic domain. Mass spectrometry-based analysis established that cysteines located at Rbx are the specific targets of the nitroalkene. Cys-nitroalkylation is a Michael addition reaction typically reverted by thiols. However, the reversible OA-NO2-mediated nitroalkylation of the kinase results in an irreversible inhibition of PknG. Cys adduction by OA-NO2 induced iron release from the Rbx domain, revealing a new strategy for the specific inhibition of PknG. These results affirm the relevance of the Rbx domain as a target for PknG inhibition and support that electrophilic lipid reactions of Rbx-Cys may represent a new drug strategy for specific PknG inhibition.
结核分枝杆菌的PknG是一种丝氨酸/苏氨酸蛋白激酶,可调节细菌细胞内的关键代谢过程以及来自被感染宿主细胞的信号通路。这种多结构域蛋白具有一个保守的典型激酶结构域,其N端和C端侧翼区域的功能作用尚不清楚。N端含有一个类红氧还蛋白结构域(Rbx),这是一种细菌蛋白模块,其特征是由四个半胱氨酸残基配位的铁离子。通过所有关键半胱氨酸残基的同时突变破坏Rbx-金属结合位点会显著损害PknG活性。这促使我们评估硝基脂肪酸(9-和10-硝基-十八碳-9-顺式烯酸;OA-NO2)对PknG活性的影响。脂肪酸硝基烯烃是炎症和代谢过程中产生的亲电物质,它们与靶蛋白的亲核残基(即半胱氨酸和组氨酸)反应,以可逆方式调节蛋白功能和亚细胞分布。在这里,我们表明OA-NO2通过与远离催化结构域的PknG共价加合来抑制激酶活性。基于质谱的分析确定,位于Rbx的半胱氨酸是硝基烯烃的特定靶点。半胱氨酸-硝基烷基化是一种通常可被硫醇逆转的迈克尔加成反应。然而,激酶的可逆OA-NO2介导的硝基烷基化导致PknG的不可逆抑制。OA-NO2对半胱氨酸的加合诱导了Rbx结构域中铁的释放,揭示了一种特异性抑制PknG的新策略。这些结果证实了Rbx结构域作为PknG抑制靶点的相关性,并支持Rbx-半胱氨酸的亲电脂质反应可能代表一种特异性抑制PknG的新药物策略。