Suppr超能文献

利用计算机化药物和实验室数据在社区医院中进行药物不良事件检测。

Adverse drug event detection in a community hospital utilising computerised medication and laboratory data.

作者信息

Seger Andrew C, Jha Ashish K, Bates David W

机构信息

Division of General Internal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.

出版信息

Drug Saf. 2007;30(9):817-24. doi: 10.2165/00002018-200730090-00007.

Abstract

OBJECTIVE

Computerised monitors can detect and, with clinical intervention, often prevent or ameliorate adverse drug events (ADEs). We evaluated whether a computer-based alerting system was useful in a community hospital setting.

METHODS

We evaluated 6 months of retrospectively collected medication and laboratory data from a 140-bed community hospital, and applied the rules from a computerised knowledge base to determine if the resulting alerts might have allowed a clinician to prevent or lessen harm related to medication toxicity. We randomly selected 11% (n = 58, of which 56 were available) of charts deemed to be high- or critical-priority alerts, based on the likelihood of the alerts being associated with injury, to determine the frequencies of ADEs and preventable ADEs.

RESULTS

In 6 months, there were 8829 activations of the rule set, generating a total of 3547 alerts. Of these, 528 were of high or critical priority, 664 were of medium priority and 2355 were of low priority. Chart review among the sample (56 charts) of high- or critical-priority alerts found five non-preventable and two preventable ADEs, suggesting that among the total high- or critical-priority alerts alone, there would be approximately 94 non-preventable ADEs and 37 preventable ADEs annually in this hospital that could be detected using this method.

CONCLUSIONS

Computer-based rules engines have the potential to identify and, with clinical intervention, mitigate preventable ADEs, and implementation is feasible in community hospitals without an advanced information technology application.

摘要

目的

计算机化监测器能够检测不良药物事件(ADEs),并通过临床干预常常预防或改善此类事件。我们评估了基于计算机的警报系统在社区医院环境中是否有用。

方法

我们评估了一家拥有140张床位的社区医院回顾性收集的6个月用药和实验室数据,并应用计算机知识库中的规则来确定生成的警报是否能让临床医生预防或减轻与药物毒性相关的伤害。我们根据警报与伤害相关的可能性,随机选择了11%(n = 58,其中56份可用)被视为高优先级或关键优先级警报的病历,以确定ADEs和可预防ADEs的发生频率。

结果

在6个月内,规则集有8829次激活,共产生3547次警报。其中,528次为高优先级或关键优先级,664次为中等优先级,2355次为低优先级。对高优先级或关键优先级警报样本(56份病历)的病历审查发现了5次不可预防的ADEs和2次可预防的ADEs,这表明仅在所有高优先级或关键优先级警报中,使用这种方法每年在该医院大约会有94次不可预防的ADEs和37次可预防的ADEs。

结论

基于计算机的规则引擎有潜力识别并通过临床干预减轻可预防的ADEs,并且在没有先进信息技术应用的社区医院中实施是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验