Suppr超能文献

计算机化检测医疗重症监护病房中的药物不良反应。

Computerized detection of adverse drug reactions in the medical intensive care unit.

机构信息

Department of Pharmacy and Therapeutics, School of Pharmacy, University Pittsburgh, Pittsburgh, PA 15261, United States.

出版信息

Int J Med Inform. 2011 Aug;80(8):570-8. doi: 10.1016/j.ijmedinf.2011.04.005. Epub 2011 May 31.

Abstract

OBJECTIVE

Clinical event monitors are a type of active medication monitoring system that can use signals to alert clinicians to possible adverse drug reactions. The primary goal was to evaluate the positive predictive values of select signals used to automate the detection of ADRs in the medical intensive care unit.

METHOD

This is a prospective, case series of adult patients in the medical intensive care unit during a six-week period who had one of five signals presents: an elevated blood urea nitrogen, vancomycin, or quinidine concentration, or a low sodium or glucose concentration. Alerts were assessed using 3 objective published adverse drug reaction determination instruments. An event was considered an adverse drug reaction when 2 out of 3 instruments had agreement of possible, probable or definite. Positive predictive values were calculated as the proportion of alerts that occurred, divided by the number of times that alerts occurred and adverse drug reactions were confirmed.

RESULTS

145 patients were eligible for evaluation. For the 48 patients (50% male) having an alert, the mean±SD age was 62±19 years. A total of 253 alerts were generated. Positive predictive values were 1.0, 0.55, 0.38 and 0.33 for vancomycin, glucose, sodium, and blood urea nitrogen, respectively. A quinidine alert was not generated during the evaluation.

CONCLUSIONS

Computerized clinical event monitoring systems should be considered when developing methods to detect adverse drug reactions as part of intensive care unit patient safety surveillance systems, since they can automate the detection of these events using signals that have good performance characteristics by processing commonly available laboratory and medication information.

摘要

目的

临床事件监测器是一种主动药物监测系统,可利用信号提醒临床医生注意可能的药物不良反应。主要目的是评估用于自动检测重症监护病房中不良反应的特定信号的阳性预测值。

方法

这是一项前瞻性、病例系列研究,纳入了在六周期间入住重症监护病房的成年患者,这些患者出现了以下五种信号之一:血尿素氮、万古霉素或奎尼丁浓度升高,或血钠或血糖浓度降低。使用三种客观发表的药物不良反应确定工具评估警报。当三种仪器中的两种一致认为可能、很可能或确定存在药物不良反应时,事件被认为是药物不良反应。阳性预测值的计算方法是出现警报的比例除以出现警报和确认药物不良反应的次数。

结果

145 名患者符合评估条件。对于出现警报的 48 名患者(50%为男性),平均年龄为 62±19 岁。共生成 253 个警报。万古霉素、葡萄糖、钠和血尿素氮的阳性预测值分别为 1.0、0.55、0.38 和 0.33。在评估期间未生成奎尼丁警报。

结论

在开发重症监护病房患者安全监测系统中检测药物不良反应的方法时,应考虑计算机化临床事件监测系统,因为它们可以利用具有良好性能特征的信号自动检测这些事件,这些信号通过处理常用的实验室和药物信息来实现。

相似文献

引用本文的文献

3
Adverse drug reactions in therapeutic hypothermia after cardiac arrest.心脏骤停后治疗性低温中的药物不良反应。
Ther Adv Drug Saf. 2017 Mar;8(3):101-111. doi: 10.1177/2042098616679813. Epub 2016 Nov 29.
8
AKI in low-risk versus high-risk patients in intensive care.重症监护中低风险与高风险患者的急性肾损伤
Clin J Am Soc Nephrol. 2015 Feb 6;10(2):187-96. doi: 10.2215/CJN.03200314. Epub 2014 Nov 25.

本文引用的文献

6
Evaluation of a computer-based adverse-drug-event monitor.基于计算机的药物不良事件监测器的评估
Am J Health Syst Pharm. 2008 Dec 1;65(23):2265-72. doi: 10.2146/ajhp080122.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验