Suppr超能文献

电子药物警戒学:开发和实施一个可计算的知识库以识别药物不良反应。

E-pharmacovigilance: development and implementation of a computable knowledge base to identify adverse drug reactions.

机构信息

Department of Paediatric and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.

出版信息

Br J Clin Pharmacol. 2013 Sep;76 Suppl 1(Suppl 1):69-77. doi: 10.1111/bcp.12127.

Abstract

AIMS

Computer-assisted signal generation is an important issue for the prevention of adverse drug reactions (ADRs). However, due to poor standardization of patients' medical data and a lack of computable medical drug knowledge the specificity of computerized decision support systems for early ADR detection is too low and thus those systems are not yet implemented in daily clinical practice. We report on a method to formalize knowledge about ADRs based on the Summary of Product Characteristics (SmPCs) and linking them with structured patient data to generate safety signals automatically and with high sensitivity and specificity.

METHODS

A computable ADR knowledge base (ADR-KB) that inherently contains standardized concepts for ADRs (WHO-ART), drugs (ATC) and laboratory test results (LOINC) was built. The system was evaluated in study populations of paediatric and internal medicine inpatients.

RESULTS

A total of 262 different ADR concepts related to laboratory findings were linked to 212 LOINC terms. The ADR knowledge base was retrospectively applied to a study population of 970 admissions (474 internal and 496 paediatric patients), who underwent intensive ADR surveillance. The specificity increased from 7% without ADR-KB up to 73% in internal patients and from 19.6% up to 91% in paediatric inpatients, respectively.

CONCLUSIONS

This study shows that contextual linkage of patients' medication data with laboratory test results is a useful and reasonable instrument for computer-assisted ADR detection and a valuable step towards a systematic drug safety process. The system enables automated detection of ADRs during clinical practice with a quality close to intensive chart review.

摘要

目的

计算机辅助信号生成是预防药物不良反应(ADR)的一个重要问题。然而,由于患者医疗数据的标准化程度较差,以及缺乏可计算的药物知识,用于早期 ADR 检测的计算机化决策支持系统的特异性太低,因此这些系统尚未在日常临床实践中实施。我们报告了一种基于产品特性摘要(SmPC)将 ADR 知识形式化的方法,并将其与结构化患者数据链接,以自动生成具有高灵敏度和特异性的安全信号。

方法

构建了一个可计算的 ADR 知识库(ADR-KB),其中包含 ADR(WHO-ART)、药物(ATC)和实验室检验结果(LOINC)的标准化概念。该系统在儿科和内科住院患者的研究人群中进行了评估。

结果

共链接了 262 个与实验室发现相关的不同 ADR 概念到 212 个 LOINC 术语。ADR 知识库被 retrospective 应用于 970 例住院患者(474 例内科患者和 496 例儿科患者)的研究人群中,这些患者接受了强化 ADR 监测。特异性从无 ADR-KB 时的 7%增加到内科患者的 73%,从儿科患者的 19.6%增加到 91%。

结论

这项研究表明,将患者的用药数据与实验室检验结果进行上下文链接是计算机辅助 ADR 检测的一种有用且合理的工具,也是迈向系统性药物安全流程的有价值的一步。该系统可在临床实践中实现 ADR 的自动检测,其质量接近密集图表审查。

相似文献

2
Supervised signal detection for adverse drug reactions in medication dispensing data.基于配药数据的药物不良反应的有监督信号检测。
Comput Methods Programs Biomed. 2018 Jul;161:25-38. doi: 10.1016/j.cmpb.2018.03.021. Epub 2018 Apr 14.

引用本文的文献

7
Safety of azithromycin in pediatrics: a systematic review and meta-analysis.阿奇霉素在儿科中的安全性:系统评价和荟萃分析。
Eur J Clin Pharmacol. 2020 Dec;76(12):1709-1721. doi: 10.1007/s00228-020-02956-3. Epub 2020 Jul 17.

本文引用的文献

3
Pharmacovigilance in pediatrics: current challenges.儿科药物警戒:当前挑战
Paediatr Drugs. 2012 Feb 1;14(1):1-5. doi: 10.2165/11596590-000000000-00000.
4
Data mining to generate adverse drug events detection rules.数据挖掘以生成药物不良事件检测规则。
IEEE Trans Inf Technol Biomed. 2011 Nov;15(6):823-30. doi: 10.1109/TITB.2011.2165727. Epub 2011 Aug 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验