Suppr超能文献

Mcm5蛋白的结构变化绕过Cdc7-Dbf4功能并降低酿酒酵母中的复制起点效率。

Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae.

作者信息

Hoang Margaret L, Leon Ronald P, Pessoa-Brandao Luis, Hunt Sonia, Raghuraman M K, Fangman Walton L, Brewer Bonita J, Sclafani Robert A

机构信息

Department of Genome Sciences, University of Washington, Seattle, USA.

出版信息

Mol Cell Biol. 2007 Nov;27(21):7594-602. doi: 10.1128/MCB.00997-07. Epub 2007 Aug 27.

Abstract

Eukaryotic chromosomal replication is a complicated process with many origins firing at different efficiencies and times during S phase. Prereplication complexes are assembled on all origins in G(1) phase, and yet only a subset of complexes is activated during S phase by DDK (for Dbf4-dependent kinase) (Cdc7-Dbf4). The yeast mcm5-bob1 (P83L) mutation bypasses DDK but results in reduced intrinsic firing efficiency at 11 endogenous origins and at origins located on minichromosomes. Origin efficiency may result from Mcm5 protein assuming an altered conformation, as predicted from the atomic structure of an archaeal MCM (for minichromosome maintenance) homologue. Similarly, an intragenic mutation in a residue predicted to interact with P83L suppresses the mcm5-bob1 bypass phenotype. We propose DDK phosphorylation of the MCM complex normally results in a single, highly active conformation of Mcm5, whereas the mcm5-bob1 mutation produces a number of conformations, only one of which is permissive for origin activation. Random adoption of these alternate states by the mcm5-bob1 protein can explain both how origin firing occurs independently of DDK and why origin efficiency is reduced. Because similar mutations in mcm2 and mcm4 cannot bypass DDK, Mcm5 protein may be a unique Mcm protein that is the final target of DDK regulation.

摘要

真核生物染色体复制是一个复杂的过程,在S期有许多复制起点以不同效率和时间启动。复制前复合体在G1期组装在所有复制起点上,但在S期只有一部分复合体被DDK(Dbf4依赖激酶)(Cdc7-Dbf4)激活。酵母mcm5-bob1(P83L)突变绕过了DDK,但导致11个内源性复制起点以及位于微型染色体上的复制起点的内在启动效率降低。复制起点效率可能是由于Mcm5蛋白呈现出改变的构象,正如从古细菌MCM(微型染色体维持)同源物的原子结构所预测的那样。同样,预测与P83L相互作用的残基中的一个基因内突变抑制了mcm5-bob1的绕过表型。我们提出,MCM复合体的DDK磷酸化通常会导致Mcm5形成单一的、高活性构象,而mcm5-bob1突变会产生多种构象,其中只有一种构象允许复制起点激活。mcm5-bob1蛋白随机采用这些替代状态可以解释复制起点如何独立于DDK启动以及复制起点效率为何降低。由于mcm2和mcm4中的类似突变不能绕过DDK,Mcm5蛋白可能是一种独特的Mcm蛋白,是DDK调控的最终靶点。

相似文献

2
Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits.
J Biol Chem. 2013 May 24;288(21):14926-35. doi: 10.1074/jbc.M112.392910. Epub 2013 Apr 2.
4
Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
Genetics. 2006 Sep;174(1):87-99. doi: 10.1534/genetics.106.060236. Epub 2006 Jul 2.
5
Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.
Genome Res. 2016 Mar;26(3):315-30. doi: 10.1101/gr.195248.115. Epub 2016 Jan 5.
6
Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth.
J Biol Chem. 2009 Oct 16;284(42):28823-31. doi: 10.1074/jbc.M109.039123. Epub 2009 Aug 18.
8
Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1899-908. doi: 10.1073/pnas.1404063111. Epub 2014 Apr 16.
9
The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4.
Nature. 2010 Jan 7;463(7277):113-7. doi: 10.1038/nature08647.
10
The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly.
J Biol Chem. 2015 Jan 9;290(2):1210-21. doi: 10.1074/jbc.M114.608232. Epub 2014 Dec 3.

引用本文的文献

2
Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast.
Cell Rep. 2023 Mar 28;42(3):112161. doi: 10.1016/j.celrep.2023.112161. Epub 2023 Feb 25.
3
CDC7-independent G1/S transition revealed by targeted protein degradation.
Nature. 2022 May;605(7909):357-365. doi: 10.1038/s41586-022-04698-x. Epub 2022 May 4.
4
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint.
Curr Genet. 2022 Apr;68(2):165-179. doi: 10.1007/s00294-022-01228-0. Epub 2022 Feb 12.
5
Cdc7-mediated phosphorylation of Cse4 regulates high-fidelity chromosome segregation in budding yeast.
Mol Biol Cell. 2021 Nov 1;32(21):ar15. doi: 10.1091/mbc.E21-06-0323. Epub 2021 Aug 25.
6
Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in .
G3 (Bethesda). 2020 Jun 1;10(6):2057-2068. doi: 10.1534/g3.120.401131.
7
Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in .
Genetics. 2019 Apr;211(4):1219-1237. doi: 10.1534/genetics.118.301858. Epub 2019 Feb 6.
8
Mechanisms and regulation of DNA replication initiation in eukaryotes.
Crit Rev Biochem Mol Biol. 2017 Apr;52(2):107-144. doi: 10.1080/10409238.2016.1274717. Epub 2017 Jan 17.
9
Mechanisms Governing DDK Regulation of the Initiation of DNA Replication.
Genes (Basel). 2016 Dec 22;8(1):3. doi: 10.3390/genes8010003.
10

本文引用的文献

1
Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast.
Nature. 2007 Jan 18;445(7125):281-5. doi: 10.1038/nature05432. Epub 2006 Dec 13.
2
CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast.
Nature. 2007 Jan 18;445(7125):328-32. doi: 10.1038/nature05465. Epub 2006 Dec 13.
3
Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin.
J Biol Chem. 2006 Dec 22;281(51):39249-61. doi: 10.1074/jbc.M608935200. Epub 2006 Oct 17.
5
Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
Genetics. 2006 Sep;174(1):87-99. doi: 10.1534/genetics.106.060236. Epub 2006 Jul 2.
6
Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.
Nat Cell Biol. 2006 Feb;8(2):148-55. doi: 10.1038/ncb1358. Epub 2006 Jan 22.
7
Biochemical activities of the BOB1 mutant in Methanobacterium thermoautotrophicum MCM.
Biochemistry. 2006 Jan 17;45(2):462-7. doi: 10.1021/bi051754z.
8
DNA replication origins fire stochastically in fission yeast.
Mol Biol Cell. 2006 Jan;17(1):308-16. doi: 10.1091/mbc.e05-07-0657. Epub 2005 Oct 26.
9
Right place, right time, and only once: replication initiation in metazoans.
Cell. 2005 Oct 7;123(1):13-24. doi: 10.1016/j.cell.2005.09.019.
10
The MCM complex: its role in DNA replication and implications for cancer therapy.
Curr Cancer Drug Targets. 2005 Aug;5(5):365-80. doi: 10.2174/1568009054629654.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验