Khelfaoui Malik, Denis Cécile, van Galen Elly, de Bock Frédéric, Schmitt Alain, Houbron Christophe, Morice Elise, Giros Bruno, Ramakers Ger, Fagni Laurent, Chelly Jamel, Nosten-Bertrand Marika, Billuart Pierre
Department of Genetic and Development, Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique [Unité Mixte de Recherche 8104], F-75014 Paris, France.
J Neurosci. 2007 Aug 29;27(35):9439-50. doi: 10.1523/JNEUROSCI.2029-07.2007.
Loss of oligophrenin1 (OPHN1) function in human causes X-linked mental retardation associated with cerebellar hypoplasia and, in some cases, with lateral ventricle enlargement. In vitro studies showed that ophn1 regulates dendritic spine through the control of Rho GTPases, but its in vivo function remains unknown. We generated a mouse model of ophn1 deficiency and showed that it mimics the ventricles enlargement without affecting the cerebellum morphoanatomy. The ophn1 knock-out mice exhibit behavioral defects in spatial memory together with impairment in social behavior, lateralization, and hyperactivity. Long-term potentiation and mGluR-dependent long-term depression are normal in the CA1 hippocampal area of ophn1 mutant, whereas paired-pulse facilitation is reduced. This altered short-term plasticity that reflects changes in the release of neurotransmitters from the presynaptic processes is associated with normal synaptic density together with a reduction in mature dendritic spines. In culture, inactivation of ophn1 function increases the density and proportion of immature spines. Using a conditional model of loss of ophn1 function, we confirmed this immaturity defect and showed that ophn1 is required at all the stages of the development. These studies show that, depending of the context, ophn1 controls the maturation of dendritic spines either by maintaining the density of mature spines or by limiting the extension of new filopodia. Altogether, these observations indicate that cognitive impairment related to OPHN1 loss of function is associated with both presynaptic and postsynaptic alterations.
在人类中,少突脑苷脂1(OPHN1)功能丧失会导致与小脑发育不全相关的X连锁智力迟钝,在某些情况下还伴有侧脑室扩大。体外研究表明,ophn1通过控制Rho GTP酶来调节树突棘,但其体内功能仍然未知。我们构建了ophn1缺陷的小鼠模型,并表明该模型模拟了脑室扩大,而不影响小脑的形态解剖结构。ophn1基因敲除小鼠在空间记忆方面表现出行为缺陷,同时伴有社交行为、偏侧化和多动障碍。ophn1突变体的海马CA1区的长时程增强和代谢型谷氨酸受体依赖的长时程抑制正常,而双脉冲易化作用减弱。这种反映突触前过程中神经递质释放变化的短期可塑性改变与正常的突触密度以及成熟树突棘数量减少有关。在培养过程中,ophn1功能失活会增加未成熟棘的密度和比例。使用ophn1功能丧失的条件模型,我们证实了这种不成熟缺陷,并表明ophn1在发育的所有阶段都是必需的。这些研究表明,根据具体情况,ophn1通过维持成熟棘的密度或限制新丝状伪足的延伸来控制树突棘的成熟。总之,这些观察结果表明,与OPHN1功能丧失相关的认知障碍与突触前和突触后改变均有关。