Zhang Chun-Lei, Aime Mattia, Laheranne Emilie, Houbaert Xander, El Oussini Hajer, Martin Christelle, Lepleux Marilyn, Normand Elisabeth, Chelly Jamel, Herzog Etienne, Billuart Pierre, Humeau Yann
Team Synapse in Cognition and.
Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, Institut Pasteur, 67400 Paris, France.
J Neurosci. 2017 Nov 15;37(46):11114-11126. doi: 10.1523/JNEUROSCI.0351-17.2017. Epub 2017 Oct 13.
Classical and systems genetics have identified wide networks of genes associated with cognitive and neurodevelopmental diseases. In parallel to deciphering the role of each of these genes in neuronal or synaptic function, evaluating the response of neuronal and molecular networks to gene loss of function could reveal some pathophysiological mechanisms potentially accessible to nongenetic therapies. Loss of function of the Rho-GAP oligophrenin-1 is associated with cognitive impairments in both human and mouse. Upregulation of both PKA and ROCK has been reported in mice, but it remains unclear whether kinase hyperactivity contributes to the behavioral phenotypes. In this study, we thoroughly characterized a prominent perseveration phenotype displayed by -deficient mice using a Y-maze spatial working memory (SWM) test. We report that deficiency in the mouse generated severe cognitive impairments, characterized by both a high occurrence of perseverative behaviors and a lack of deliberation during the SWM test. and pharmacological experiments suggest that PKA dysregulation in the mPFC underlies cognitive dysfunction in -deficient mice, as assessed using a delayed spatial alternation task results. Functionally, mPFC neuronal networks appeared to be affected in a PKA-dependent manner, whereas hippocampal-PFC projections involved in SWM were not affected in mice. Thus, we propose that discrete gene mutations in intellectual disability might generate "secondary" pathophysiological mechanisms, which are prone to become pharmacological targets for curative strategies in adult patients. Here we report that deficiency generates severe impairments in performance at spatial working memory tests, characterized by a high occurrence of perseverative behaviors and a lack of decision making. This cognitive deficit is consecutive to PKA deregulation in the mPFC that prevents KO mice to exploit a correctly acquired rule. Functionally, mPFC neuronal networks appear to be affected in a PKA-dependent manner, whereas behaviorally important hippocampal projections were preserved by the mutation. Thus, we propose that discrete gene mutations in intellectual disability can generate "secondary" pathophysiological mechanisms prone to become pharmacological targets for curative strategies in adults.
经典遗传学和系统遗传学已经确定了与认知和神经发育疾病相关的广泛基因网络。在解读这些基因在神经元或突触功能中的各自作用的同时,评估神经元和分子网络对基因功能丧失的反应可能会揭示一些非基因治疗可能针对的病理生理机制。Rho-GAP寡突神经胶质蛋白-1的功能丧失与人类和小鼠的认知障碍有关。在小鼠中已报道蛋白激酶A(PKA)和 Rho相关卷曲螺旋蛋白激酶(ROCK)均上调,但激酶活性过高是否导致行为表型仍不清楚。在本研究中,我们使用Y迷宫空间工作记忆(SWM)测试全面表征了缺乏该蛋白的小鼠所表现出的显著持续性行为表型。我们报告称,小鼠中该蛋白的缺乏会导致严重的认知障碍,其特征是在SWM测试中持续性行为的高发生率以及缺乏思考。行为学和药理学实验表明,内侧前额叶皮质(mPFC)中PKA的失调是该蛋白缺乏小鼠认知功能障碍的基础,这是通过延迟空间交替任务结果评估得出的。在功能上,mPFC神经元网络似乎以PKA依赖的方式受到影响,而参与SWM的海马-前额叶皮质投射在该蛋白缺乏的小鼠中未受影响。因此,我们提出智力残疾中的离散基因突变可能会产生“继发性”病理生理机制,这些机制易于成为成年患者治疗策略的药理学靶点。在此我们报告,该蛋白缺乏会导致空间工作记忆测试表现严重受损,其特征是持续性行为的高发生率和缺乏决策能力。这种认知缺陷是由于mPFC中PKA失调导致该蛋白敲除(KO)小鼠无法运用正确习得的规则。在功能上,mPFC神经元网络似乎以PKA依赖的方式受到影响,而行为上重要的海马投射则因突变而得以保留。因此,我们提出智力残疾中的离散基因突变可以产生“继发性”病理生理机制,这些机制易于成为成人治疗策略的药理学靶点。