Suppr超能文献

In vitro and in vivo studies of the properties of an artificial membrane for pancreatic islet encapsulation.

作者信息

Kessler L, Pinget M, Aprahamian M, Dejardin P, Damgé C

机构信息

INSERM Unité 61, Biologie Cellulaire et Physiopathologie Digestives, Strasbourg, France.

出版信息

Horm Metab Res. 1991 Jul;23(7):312-7. doi: 10.1055/s-2007-1003685.

Abstract

Encapsulation of pancreatic islets with an artificial membrane has been proposed as a means of immunoprotection after transplantation. Such a membrane should be biocompatible, nondegradable, and should allow the passage of insulin and glucose while preventing that of antibodies and lymphocytes. Thus, we have studied in vitro and in vivo, the characteristics of an acrylonitrile membrane (AN69, HOSPAL, Sweden) for islet encapsulation. The AN69 membrane composed of a fiber network with a porous structure, allowed a satisfactory passage of glucose (75% of the initial amount within one hour) but not of insulin (only 7%). The morphological state of rat islets cultured on membranes under both conditions for 2 weeks was similar to that of islets cultured on dishes; in addition rat fibroblasts retracted after a 3-day culture. Finally, the membrane was unaltered after a 12 month implantation in the peritoneal cavity of rats. When the surface properties of the AN69 membrane were changed by adsorption of a hydrophilic copolymer or by protein coating, the permeability of the membrane was modified. Glucose and insulin diffusion were significantly decreased after protein-coating, whereas glucose diffusion was preserved and that of insulin doubled after adsorption of a copolymer onto the membrane. In addition, after a 12-month implantation in the rat, the membrane surface treated by the copolymer was altered leading to the adhesion of macrophages. In conclusion, the AN69 acrylonitrile membrane may be useful for pancreatic islet encapsulation; its insulin permeability should be increased by a surface treatment aimed at increasing its hydrophilic properties. However the stability of this treatment seems to be an important factor in preserving the biocompatibility of the membrane.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验