Song Shang, Roy Shuvo
Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California 94158.
Biotechnol Bioeng. 2016 Jul;113(7):1381-402. doi: 10.1002/bit.25895. Epub 2016 Jan 4.
Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macro-capsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host's body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. Biotechnol. Bioeng. 2016;113: 1381-1402. © 2015 Wiley Periodicals, Inc.
由于大胶囊设计具有机械稳定性、多功能性和可回收性,宏观封装技术一直是1型糖尿病治疗领域中一个引人关注的话题。大胶囊可分为血管外装置和血管内装置,其中溶质传输分别依赖于扩散或对流。宏观封装策略的失败可能是由于封装的胰岛素产生细胞的再生能力有限、封装生物材料的性能欠佳、免疫隔离不足、血管灌注装置的血栓形成过多以及传质模式不足以支持细胞活力和功能。然而,宏观封装技术已经取得了重大的技术进步,即缩短氧气和营养物质的扩散距离、使用促血管生成因子增加胰岛移植的血管化,以及优化膜的渗透性和选择性以防止宿主身体的免疫攻击。本文综述了现有的宏观封装装置,并讨论了基于组织工程方法的进展,这些进展将推动宏观封装技术未来的研究与开发。《生物技术与生物工程》2016年;113: 1381 - 1402。© 2015威利期刊公司