Science. 1986 Jul 4;233(4759):97-102. doi: 10.1126/science.233.4759.97.
The low-energy charged-particle (LECP) instrument on Voyager 2 measured lowenergy electrons and ions near and within the magnetosphere of Uranus. Initial analysis of the LECP measurements has revealed the following. (i) The magnetospheric particle population consists principally of protons and electrons having energies to at least 4 and 1.2 megaelectron volts, respectively, with electron intensities substantially excceding proton intensities at a given energy. (ii) The intensity profile for both particle species shows evidence that the particles were swept by planetry satellites out to at least the orbit of Titania. (iii) The ion and electron spectra may be described by a Maxwellian core at low energies (less than about 200 kiloelectron volts) and a power law at high energies (greater than about 590 kiloelectron volts; exponentmicro, 3 to 10) except inside the orbit of Miranda, where power-law spectra (micro approximately 1.1 and 3.1 for electrons and protons, respectively) are observed. (iv) At ion energies between 0.6 and 1 megaelectron volt per nucleon, the composition is dominated by protons with a minor fraction (about 10(-3)) of molecular hydrogen; the lower limit for the ratio of hydrogen to helium is greater than 10(4). (v) The proton population is sufficiently intense that fluences greater than 10(16) per square centimeter can accumulate in 10(4) to 10(') years; such fluences are sufficient to polymerize carbon monoxide and methane ice surfaces. The overall morphology of Uranus' magnetosphere resembles that of Jupiter, as evidenced by the fact that the spacecraft crossed the plasma sheet through the dawn magnetosheath twice per planetary rotation period (17.3 hours). Uranus' magnetosphere differs from that of Jupiter and of Saturn in that the plasma 1 is at most 0.1 rather than 1. Therefore, little distortion ofthe field is expected from particle loading at distances less than about 15 Uranus radii.
航海者 2 号上的低能带电粒子(LECP)仪器测量了天王星磁层内外的低能电子和离子。对 LECP 测量的初步分析揭示了以下几点。(i)磁层粒子群主要由质子和电子组成,能量分别至少为 4 和 1.2 兆电子伏特,在给定能量下,电子强度大大超过质子强度。(ii)两种粒子的强度分布都表明,粒子是被行星卫星扫出至少到泰坦尼亚轨道以外的地方。(iii)离子和电子能谱可以用低能(小于约 200 千电子伏特)的麦克斯韦核心和高能(大于约 590 千电子伏特;指数micro,3 到 10)的幂律来描述,除了在米兰达轨道内,那里观察到幂律谱(电子和质子的 micro 分别约为 1.1 和 3.1)。(iv)在离子能量为 0.6 到 1 兆电子伏特/核子之间,组成主要由质子主导,氢分子的比例较小(约为 10(-3));氢与氦的比值下限大于 10(4)。(v)质子的密度足够高,以至于在 10(4)到 10(6)年的时间内可以积累大于 10(16)每平方厘米的通量;这种通量足以使一氧化碳和甲烷冰表面聚合。天王星磁层的整体形态与木星相似,这从航天器每行星自转周期(17.3 小时)两次穿过等离子体片穿过黎明磁鞘这一事实可以得到证明。天王星的磁层与木星和土星的磁层不同,因为等离子体密度最大为 0.1,而不是 1。因此,预计在距离小于约 15 个天王星半径的地方,粒子加载不会对磁场造成太大的扭曲。