Suppr超能文献

I类赖氨酰-tRNA合成酶α-螺旋笼结构域的反密码子识别与鉴别

Anticodon recognition and discrimination by the alpha-helix cage domain of class I lysyl-tRNA synthetase.

作者信息

Levengood Jeffrey D, Roy Hervé, Ishitani Ryuichiro, Söll Dieter, Nureki Osamu, Ibba Michael

机构信息

Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210-1292, USA.

出版信息

Biochemistry. 2007 Oct 2;46(39):11033-8. doi: 10.1021/bi700815a. Epub 2007 Aug 31.

Abstract

Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.

摘要

氨酰 - tRNA合成酶通常存在于两种相互排斥的结构类别之一中,唯一已知的例外是赖氨酰 - tRNA合成酶,它同时存在于I类(LysRS1)和II类(LysRS2)中。LysRS1和LysRS2之间在tRNA受体茎识别上的差异对细胞氨酰化水平没有显著影响,这使得人们将注意力集中在LysRS1识别tRNA反密码子的机制上。基于基于结构的序列比对,选择了7种tRNALys反密码子变体和7种LysRS1反密码子结合位点变体,用于分析嗜热栖热菌LysRS1 - tRNALys对接模型。LysRS1特异性识别第35和36位的碱基,但不识别第34位的碱基。芳香族残基与U34和U35形成堆积相互作用,氨酰化动力学也确定了Arg502与U35和U36之间的直接相互作用。还发现Tyr491与U36相互作用,并且Y491E变体在tRNALysUUG突变体的氨酰化方面与野生型相比有显著改善。基于这些数据对LysRS1 - tRNALys对接模型的优化表明,LysRS1对反密码子的识别所依赖的相互作用比LysRS2少得多,这为II类酶在tRNA识别中反密码子发挥更重要作用提供了结构基础。迄今为止,仅发现谷氨酰胺 - tRNA合成酶(GluRS)含有与LysRS1同源的α - 螺旋笼反密码子结合结构域,并且这些数据现在表明,对tRNALys反密码子的特异性可能是通过对祖先GluRS酶的相应结构域进行相对较少的改变而获得的。

相似文献

1
Anticodon recognition and discrimination by the alpha-helix cage domain of class I lysyl-tRNA synthetase.
Biochemistry. 2007 Oct 2;46(39):11033-8. doi: 10.1021/bi700815a. Epub 2007 Aug 31.
3
Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases.
J Biol Chem. 2004 Apr 23;279(17):17707-14. doi: 10.1074/jbc.M313665200. Epub 2004 Jan 27.
4
tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
J Mol Biol. 1998 May 15;278(4):801-13. doi: 10.1006/jmbi.1998.1711.
5
Functional convergence of two lysyl-tRNA synthetases with unrelated topologies.
Nat Struct Biol. 2002 Apr;9(4):257-62. doi: 10.1038/nsb777.
6
Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
Biochimie. 2005 Sep-Oct;87(9-10):847-61. doi: 10.1016/j.biochi.2005.03.007. Epub 2005 Apr 8.
7
Nonorthologous replacement of lysyl-tRNA synthetase prevents addition of lysine analogues to the genetic code.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14351-6. doi: 10.1073/pnas.2036253100. Epub 2003 Nov 17.
9
Context-dependent anticodon recognition by class I lysyl-tRNA synthetases.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14224-8. doi: 10.1073/pnas.97.26.14224.

引用本文的文献

1
Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study.
Malar J. 2019 Feb 6;18(1):34. doi: 10.1186/s12936-019-2665-6.
2
Emergence and evolution.
Top Curr Chem. 2014;344:43-87. doi: 10.1007/128_2013_423.

本文引用的文献

1
Small molecules: big players in the evolution of protein synthesis.
ACS Chem Biol. 2006 Jun 20;1(5):285-97. doi: 10.1021/cb600200k.
2
Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration.
Nature. 2006 Sep 7;443(7107):50-5. doi: 10.1038/nature05096. Epub 2006 Aug 13.
3
Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
J Mol Biol. 2006 Aug 11;361(2):300-11. doi: 10.1016/j.jmb.2006.06.015. Epub 2006 Jun 27.
4
Divergent evolution within protein superfolds inferred from profile-based phylogenetics.
J Mol Biol. 2005 Dec 2;354(3):722-37. doi: 10.1016/j.jmb.2005.08.071. Epub 2005 Sep 20.
5
Amino acid specificity in translation.
Trends Biochem Sci. 2005 Dec;30(12):659-65. doi: 10.1016/j.tibs.2005.10.006. Epub 2005 Nov 2.
6
Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
Nat Struct Mol Biol. 2005 Oct;12(10):915-22. doi: 10.1038/nsmb985. Epub 2005 Sep 11.
7
Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi.
FEBS Lett. 2005 May 9;579(12):2629-34. doi: 10.1016/j.febslet.2005.04.001. Epub 2005 Apr 9.
8
Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases.
J Biol Chem. 2004 Apr 23;279(17):17707-14. doi: 10.1074/jbc.M313665200. Epub 2004 Jan 27.
9
Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13863-8. doi: 10.1073/pnas.1936123100. Epub 2003 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验