Commans S, Lazard M, Delort F, Blanquet S, Plateau P
Laboratoire de Biochimie, URA 1970 du CNRS, Ecole Polytechnique, Palaiseau, France.
J Mol Biol. 1998 May 15;278(4):801-13. doi: 10.1006/jmbi.1998.1711.
Subclass IIb aminoacyl-tRNA synthetases (Asn-, Asp- and LysRS) recognize the anticodon triplet of their cognate tRNA (GUU, GUC and UUU, respectively) through an OB-folded N-terminal extension. In the present study, the specificity of constitutive lysyl-tRNA synthetase (LysS) from Escherichia coli was analyzed by cross-mutagenesis of the tRNA(Lys) anticodon, on the one hand, and of the amino acid residues composing the anticodon binding site on the other. From this analysis, a tentative model is deduced for both the recognition of the cognate anticodon and the rejection of non-cognate anticodons. In this model, the enzyme offers a rigid scaffold of amino acid residues along the beta-strands of the OB-fold for tRNA binding. Phe85 and Gln96 play a critical role in this spatial organization. This scaffold can recognize directly U35 at the center of the anticodon. Specification of the correct enzyme:tRNA complex is further achieved through the accommodation of U34 and U36. The binding of these bases triggers the conformationnal change of a flexible seven-residue loop between strands 4 and 5 of the OB-fold (L45). Additional free energy of binding is recovered from the resulting network of cooperative interactions. Such a mechanism would not depend on the modifications of the anticodon loop of tRNA(Lys) (mnm5s2U34 and t6A37). In the model, exclusion by the synthetase of non-cognate anticodons can be accounted for by a hindrance to the positioning of the L45 loop. In addition, Glu135 would repulse a cytosine base at position 35. Sequence comparisons show that the composition and length of the L45 loop are markedly conserved in each of the families composing subclass IIb aminoacyl-tRNA synthetases. The possible role of the loop is discussed for each case, including that of archaebacterial aspartyl-tRNA synthetases.
IIb类氨酰-tRNA合成酶(天冬酰胺、天冬氨酸和赖氨酸tRNA合成酶)通过一个OB折叠的N端延伸结构识别其同源tRNA的反密码子三联体(分别为GUU、GUC和UUU)。在本研究中,一方面通过对tRNA(Lys)反密码子进行交叉诱变,另一方面对构成反密码子结合位点的氨基酸残基进行交叉诱变,分析了大肠杆菌组成型赖氨酰-tRNA合成酶(LysS)的特异性。通过该分析,推导了一个关于同源反密码子识别和非同源反密码子排斥的初步模型。在该模型中,酶沿着OB折叠的β链提供了一个由氨基酸残基组成的刚性支架用于tRNA结合。苯丙氨酸85和谷氨酰胺96在这种空间组织中起关键作用。该支架可直接识别位于反密码子中心的U35。通过容纳U34和U36进一步实现正确的酶-tRNA复合物的特异性。这些碱基的结合触发了OB折叠结构中第4和第5链之间一个灵活的七残基环(L45)的构象变化。从由此产生的协同相互作用网络中可回收额外的结合自由能。这样一种机制不依赖于tRNA(Lys)反密码子环的修饰(mnm5s2U34和t6A37)。在该模型中,合成酶对非同源反密码子的排斥可通过L45环定位受阻来解释。此外,谷氨酸135会排斥位于第35位的胞嘧啶碱基。序列比较表明,在构成IIb类氨酰-tRNA合成酶的每个家族中,L45环的组成和长度都显著保守。针对每种情况讨论了该环可能的作用,包括古细菌天冬氨酰-tRNA合成酶的情况。