Kasten Michael R, Rudy Bernardo, Anderson Matthew P
Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
J Physiol. 2007 Oct 15;584(Pt 2):565-82. doi: 10.1113/jphysiol.2007.141135. Epub 2007 Aug 30.
Sensory signals of widely differing dynamic range and intensity are transformed into a common firing rate code by thalamocortical neurons. While a great deal is known about the ionic currents, far less is known about the specific channel subtypes regulating thalamic firing rates. We hypothesized that different K(+) and Ca(2+) channel subtypes control different stimulus-response curve properties. To define the channels, we measured firing rate while pharmacologically or genetically modulating specific channel subtypes. Inhibiting Kv3.2 K(+) channels strongly suppressed maximum firing rate by impairing membrane potential repolarization, while playing no role in the firing response to threshold stimuli. By contrast, inhibiting Kv1 channels with alpha-dendrotoxin or maurotoxin strongly increased firing rates to threshold stimuli by reducing the membrane potential where action potentials fire (V(th)). Inhibiting SK Ca(2+)-activated K(+) channels with apamin robustly increased gain (slope of the stimulus-response curve) and maximum firing rate, with minimum effects on threshold responses. Inhibiting N-type Ca(2+) channels with omega-conotoxin GVIA or omega-conotoxin MVIIC partially mimicked apamin, while inhibiting L-type and P/Q-type Ca(2+) channels had small or no effects. EPSC-like current injections closely mimicked the results from tonic currents. Our results show that Kv3.2, Kv1, SK potassium and N-type calcium channels strongly regulate thalamic relay neuron sensory transmission and that each channel subtype controls a different stimulus-response curve property. Differential regulation of threshold, gain and maximum firing rate may help vary the stimulus-response properties across and within thalamic nuclei, normalize responses to diverse sensory inputs, and underlie sensory perception disorders.
具有广泛不同动态范围和强度的感觉信号通过丘脑皮质神经元被转化为一种共同的发放率编码。虽然人们对离子电流了解很多,但对调节丘脑发放率的特定通道亚型却知之甚少。我们假设不同的钾离子(K⁺)和钙离子(Ca²⁺)通道亚型控制不同的刺激 - 反应曲线特性。为了确定这些通道,我们在药理学或遗传学上调节特定通道亚型时测量发放率。抑制Kv3.2钾离子通道通过损害膜电位复极化强烈抑制最大发放率,而对阈值刺激的发放反应没有作用。相比之下,用α - 银环蛇毒素或茂物毒素抑制Kv1通道通过降低动作电位发放处的膜电位(Vth)强烈增加对阈值刺激的发放率。用蜂毒明肽抑制小电导钙激活钾离子(SK Ca²⁺激活K⁺)通道显著增加增益(刺激 - 反应曲线的斜率)和最大发放率,对阈值反应影响最小。用ω - 芋螺毒素GVIA或ω - 芋螺毒素MVIIC抑制N型钙离子通道部分模拟了蜂毒明肽的作用,而抑制L型和P/Q型钙离子通道则作用很小或没有作用。类兴奋性突触后电流(EPSC)样电流注入紧密模拟了强直电流的结果。我们的结果表明,Kv3.2、Kv1、SK钾离子通道和N型钙离子通道强烈调节丘脑中继神经元的感觉传递,并且每种通道亚型控制不同的刺激 - 反应曲线特性。对阈值、增益和最大发放率的差异调节可能有助于改变丘脑核团之间和内部的刺激 - 反应特性,使对不同感觉输入的反应标准化,并成为感觉知觉障碍的基础。