Suppr超能文献

使用数据驱动的贝叶斯模型改进胎儿血氧合及胎盘扩散加权磁共振成像的估计测量。

Improved fetal blood oxygenation and placental estimated measurements of diffusion-weighted MRI using data-driven Bayesian modeling.

作者信息

Flouri Dimitra, Owen David, Aughwane Rosalind, Mufti Nada, Maksym Kasia, Sokolska Magdalena, Kendall Giles, Bainbridge Alan, Atkinson David, Vercauteren Tom, Ourselin Sebastien, David Anna L, Melbourne Andrew

机构信息

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.

出版信息

Magn Reson Med. 2020 Jun;83(6):2160-2172. doi: 10.1002/mrm.28075. Epub 2019 Nov 19.

Abstract

PURPOSE

Motion correction in placental DW-MRI is challenging due to maternal breathing motion, maternal movements, and rapid intensity changes. Parameter estimates are usually obtained using least-squares methods for voxel-wise fitting; however, they typically give noisy estimates due to low signal-to-noise ratio. We introduce a model-driven registration (MDR) technique which incorporates a placenta-specific signal model into the registration process, and we present a Bayesian approach for Diffusion-rElaxation Combined Imaging for Detailed placental Evaluation model to obtain individual and population trends in estimated parameters.

METHODS

MDR exploits the fact that a placenta signal model is available and thus we incorporate it into the registration to generate a series of target images. The proposed registration method is compared to a pre-existing method used for DCE-MRI data making use of principal components analysis. The Bayesian shrinkage prior (BSP) method has no user-defined parameters and therefore measures of parameter variation in a region of interest are determined by the data alone. The MDR method and the Bayesian approach were evaluated on 10 control 4D DW-MRI singleton placental data.

RESULTS

MDR method improves the alignment of placenta data compared to the pre-existing method. It also shows a further reduction of the residual error between the data and the fit. BSP approach showed higher precision leading to more clearly apparent spatial features in the parameter maps. Placental fetal oxygen saturation (FO ) showed a negative linear correlation with gestational age.

CONCLUSIONS

The proposed pipeline provides a robust framework for registering DW-MRI data and analyzing longitudinal changes of placental function.

摘要

目的

由于母体呼吸运动、母体移动以及快速的强度变化,胎盘扩散加权磁共振成像(DW-MRI)中的运动校正具有挑战性。参数估计通常使用体素逐点拟合的最小二乘法获得;然而,由于信噪比低,这些估计通常会产生噪声。我们引入了一种模型驱动的配准(MDR)技术,该技术将胎盘特异性信号模型纳入配准过程,并提出了一种用于详细胎盘评估的扩散弛豫联合成像的贝叶斯方法,以获得估计参数中的个体和总体趋势。

方法

MDR利用了胎盘信号模型可用这一事实,因此我们将其纳入配准以生成一系列目标图像。将所提出的配准方法与利用主成分分析的用于动态对比增强磁共振成像(DCE-MRI)数据的现有方法进行比较。贝叶斯收缩先验(BSP)方法没有用户定义的参数,因此感兴趣区域内参数变化的测量仅由数据确定。在10例对照4D DW-MRI单胎胎盘数据上评估了MDR方法和贝叶斯方法。

结果

与现有方法相比,MDR方法改善了胎盘数据的对齐。它还显示出数据与拟合之间的残余误差进一步减小。BSP方法显示出更高的精度,导致参数图中的空间特征更加明显。胎盘胎儿氧饱和度(FO)与胎龄呈负线性相关。

结论

所提出的流程为配准DW-MRI数据和分析胎盘功能的纵向变化提供了一个强大的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aac2/7064949/4335d84d546e/MRM-83-2160-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验