Suppr超能文献

利用磷酸化蛋白质组学揭示植物中的信号转导动态。

Using phosphoproteomics to reveal signalling dynamics in plants.

作者信息

de la Fuente van Bentem Sergio, Hirt Heribert

机构信息

Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.

出版信息

Trends Plant Sci. 2007 Sep;12(9):404-11. doi: 10.1016/j.tplants.2007.08.007. Epub 2007 Aug 31.

Abstract

To ensure appropriate responses to stimuli, organisms have evolved signalling networks that rely on post-translational modifications of their components. Among these, protein phosphorylation has a prominent role and much research in plants has focused on protein kinases and phosphatases, which, respectively, catalyse phosphorylation and dephosphorylation of specific substrates. Technical limitations, however, have hampered the identification of these substrates. As reviewed here, novel mass spectrometry-based techniques have enabled the large-scale mapping of in vivo phosphorylation sites. Alternatively, methods based on peptide and protein microarrays have revealed protein kinase activities in cell extracts, in addition to kinase substrates. A combined phosphoproteomic approach of mass spectrometry and microarray technology could enhance the construction of dynamic plant signalling networks that underlie plant biology.

摘要

为确保对刺激做出适当反应,生物体进化出了依赖其组分翻译后修饰的信号网络。其中,蛋白质磷酸化起着重要作用,植物领域的许多研究都集中在蛋白激酶和磷酸酶上,它们分别催化特定底物的磷酸化和去磷酸化。然而,技术限制阻碍了这些底物的鉴定。如本文所述,基于质谱的新技术已能够大规模绘制体内磷酸化位点。另外,基于肽和蛋白质微阵列的方法除了能揭示激酶底物外,还能揭示细胞提取物中的蛋白激酶活性。将质谱和微阵列技术相结合的磷酸蛋白质组学方法,可能会促进构建作为植物生物学基础的动态植物信号网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验