Upmacis Rita K, Crabtree Mark J, Deeb Ruba S, Shen Hao, Lane Paul B, Benguigui Lea Esther S, Maeda Nobuyo, Hajjar David P, Gross Steven S
Center of Vascular Biology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021, USA.
Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H2878-87. doi: 10.1152/ajpheart.01144.2006. Epub 2007 Aug 31.
Diminished nitric oxide (NO) bioactivity and enhanced peroxynitrite formation have been implicated as major contributors to atherosclerotic vascular dysfunctions. Hallmark reactions of peroxynitrite include the accumulation of 3-nitrotyrosine (3-NT) in proteins and oxidation of the NO synthase (NOS) cofactor, tetrahydrobiopterin (BH(4)). The present study sought to 1) quantify the extent to which 3-NT accumulates and BH(4) becomes oxidized in organs of apolipoprotein E-deficient (ApoE(-/-)) atherosclerotic mice and 2) determine the specific contribution of inducible NOS (iNOS) to these processes. Whereas protein 3-NT and oxidized BH(4) were undetected or near the detection limit in heart, lung, and kidney of 3-wk-old ApoE(-/-) mice or ApoE(-/-) mice fed a regular chow diet for 24 wk, robust accumulation was evident after 24 wk on a Western (atherogenic) diet. Since 3-NT accumulation was diminished 3- to 20-fold in heart, lung, and liver in ApoE(-/-) mice missing iNOS, iNOS-derived species are involved in this reaction. In contrast, iNOS-derived species did not contribute to elevated protein 3-NT formation in kidney or brain. iNOS deletion also afforded marked protection against BH(4) oxidation in heart, lung, and kidney of atherogenic ApoE(-/-) mice but not in brain or liver. These findings demonstrate that iNOS-derived species are increased during atherogenesis in ApoE(-/-) mice and that these species differentially contribute to protein 3-NT accumulation and BH(4) oxidation in a tissue-selective manner. Since BH(4) oxidation can switch the predominant NOS product from NO to superoxide, we predict that progressive NOS uncoupling is likely to drive atherogenic vascular dysfunctions.
一氧化氮(NO)生物活性降低和过氧亚硝酸盐生成增加被认为是动脉粥样硬化血管功能障碍的主要原因。过氧亚硝酸盐的标志性反应包括蛋白质中3-硝基酪氨酸(3-NT)的积累以及一氧化氮合酶(NOS)辅因子四氢生物蝶呤(BH(4))的氧化。本研究旨在:1)量化载脂蛋白E缺陷(ApoE(-/-))动脉粥样硬化小鼠器官中3-NT积累和BH(4)氧化的程度;2)确定诱导型NOS(iNOS)对这些过程的具体贡献。在3周龄的ApoE(-/-)小鼠或喂食常规饲料24周的ApoE(-/-)小鼠的心脏、肺和肾脏中,蛋白质3-NT和氧化型BH(4)未被检测到或接近检测限,但在喂食西式(致动脉粥样硬化)饲料24周后,明显积累。由于在缺失iNOS的ApoE(-/-)小鼠的心脏、肺和肝脏中,3-NT积累减少了3至20倍,因此iNOS衍生的物质参与了这一反应。相比之下,iNOS衍生的物质对肾脏或大脑中蛋白质3-NT形成的增加没有贡献。iNOS缺失也为致动脉粥样硬化的ApoE(-/-)小鼠的心脏、肺和肾脏中的BH(4)氧化提供了显著保护,但对大脑或肝脏没有保护作用。这些发现表明,在ApoE(-/-)小鼠的动脉粥样硬化形成过程中,iNOS衍生的物质增加,并且这些物质以组织选择性的方式对蛋白质3-NT积累和BH(4)氧化有不同的贡献。由于BH(4)氧化可将主要的NOS产物从NO转变为超氧化物,我们预测渐进性NOS解偶联可能会导致动脉粥样硬化性血管功能障碍。