Karbowski Jan, Schindelman Gary, Cronin Christopher J, Seah Adeline, Sternberg Paul W
Howard Hughes Medical Institute and Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
J Comput Neurosci. 2008 Jun;24(3):253-76. doi: 10.1007/s10827-007-0054-6. Epub 2007 Sep 1.
To establish the relationship between locomotory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synaptic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (1) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (2) existence of some form of neuromuscular (stretch receptor) feedback, (3) invariance of neuromuscular wavelength, (4) biphasic dependence of frequency on synaptic signaling, and (5) decrease of frequency with increase of the muscle time constant. Based on (1) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (1) and (2) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data (3), (4), and (5), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.
为了建立秀丽隐杆线虫的运动行为与神经回路动力学之间的关系,我们结合了分子和理论方法。具体而言,我们定量分析了秀丽隐杆线虫在突触γ-氨基丁酸(GABA)和乙酰胆碱传递缺陷、肌肉钙信号缺陷以及肌肉和表皮结构缺陷情况下的运动,并将数据与我们的系统水平回路模型进行了比较。主要实验结果如下:(1)几乎所有菌株在向前和向后运动时,身体弯曲柔韧性从前到后都存在梯度,对于神经元突变体,波动频率也存在类似的微弱梯度;(2)存在某种形式的神经肌肉(牵张感受器)反馈;(3)神经肌肉波长不变;(4)频率对突触信号的双相依赖性;(5)频率随肌肉时间常数的增加而降低。基于(1),我们假设中央模式发生器(CPG)在向前和向后运动时均位于头部。要点(1)和(2)是我们理论模型的起始假设,如果牵张感受器反馈足够强且缓慢,其动力学模式对CPG设计的细节在定性上不敏感。该模型表明,体壁中的牵张感受器耦合对于神经肌肉波的产生至关重要。我们的模型与我们的行为数据(3)、(4)和(5)以及其他相关已发表数据一致,例如频率是肌肉间隙连接耦合的递增函数。