Suppr超能文献

血红素水平在转录激活因子和转录抑制因子之间切换酿酒酵母Hap1的功能。

Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor.

作者信息

Hickman Mark J, Winston Fred

机构信息

Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.

出版信息

Mol Cell Biol. 2007 Nov;27(21):7414-24. doi: 10.1128/MCB.00887-07. Epub 2007 Sep 4.

Abstract

Changes in oxygen levels cause widespread changes in gene expression in organisms ranging from bacteria to humans. In Saccharomyces cerevisiae, this response is mediated in part by Hap1, originally identified as a heme-dependent transcriptional activator that functions during aerobic growth. We show here that Hap1 also plays a significant and direct role under hypoxic conditions, not as an activator, but as a repressor. The repressive activity of Hap1 controls several genes, including three ERG genes required for ergosterol biosynthesis. Chromatin immunoprecipitation experiments showed that Hap1 binds to the ERG gene promoters, while additional experiments showed that the corepressor Tup1/Ssn6 is recruited by Hap1 and is also required for repression. Furthermore, mutational analysis demonstrated that conserved Hap1 binding sites in the ERG5 5' regulatory region are required for repression. The switch of Hap1 from acting as a hypoxic repressor to an aerobic activator is determined by heme, which is synthesized only in the presence of oxygen. The ability of Hap1 to function as a ligand-dependent repressor and activator is a property shared with mammalian nuclear hormone receptors and likely allows greater transcriptional control by Hap1 in response to changing oxygen levels.

摘要

氧水平的变化会在从细菌到人类的各种生物体中引起基因表达的广泛变化。在酿酒酵母中,这种反应部分由Hap1介导,Hap1最初被鉴定为一种在有氧生长过程中起作用的血红素依赖性转录激活因子。我们在此表明,Hap1在低氧条件下也起着重要的直接作用,不是作为激活因子,而是作为阻遏因子。Hap1的阻遏活性控制着几个基因,包括麦角固醇生物合成所需的三个ERG基因。染色质免疫沉淀实验表明,Hap1与ERG基因启动子结合,而其他实验表明,共阻遏因子Tup1/Ssn6由Hap1招募,也是阻遏所必需的。此外,突变分析表明,ERG5 5'调控区域中保守的Hap1结合位点是阻遏所必需的。Hap1从作为低氧阻遏因子转变为有氧激活因子是由血红素决定的,血红素仅在有氧的情况下合成。Hap1作为配体依赖性阻遏因子和激活因子发挥作用的能力是与哺乳动物核激素受体共有的特性,可能使Hap1能够根据氧水平的变化进行更大程度的转录控制。

相似文献

2
The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae.
Genetics. 2005 Mar;169(3):1343-52. doi: 10.1534/genetics.104.037143. Epub 2005 Jan 16.
3
A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex.
J Biol Chem. 2004 Jun 25;279(26):27607-12. doi: 10.1074/jbc.M402777200. Epub 2004 Apr 21.
4
Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1.
Genetics. 1994 Mar;136(3):813-7. doi: 10.1093/genetics/136.3.813.
5
The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme.
Mol Cell Biol. 2001 Dec;21(23):7923-32. doi: 10.1128/MCB.21.23.7923-7932.2001.
7
Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
J Mol Biol. 2001 Jun 22;309(5):1007-15. doi: 10.1006/jmbi.2001.4742.
9
HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae.
Mol Cell Biol. 1992 Jun;12(6):2616-23. doi: 10.1128/mcb.12.6.2616-2623.1992.
10
Regulation of hypoxic gene expression in yeast.
Kidney Int. 1997 Feb;51(2):507-13. doi: 10.1038/ki.1997.71.

引用本文的文献

1
The yeast Mkt1/Pbp1 complex promotes adaptive responses to respiratory growth.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202411169. Epub 2025 Aug 13.
4
Agar lot-specific inhibition in the plating efficiency of yeast spores and cells.
G3 (Bethesda). 2024 Sep 23;14(12). doi: 10.1093/g3journal/jkae229.
5
Transcriptome analysis of Kluyveromyces marxianus under succinic acid stress and development of robust strains.
Appl Microbiol Biotechnol. 2024 Apr 9;108(1):293. doi: 10.1007/s00253-024-13097-3.
6
Disruption of in rescues growth on fermentable carbon sources.
MicroPubl Biol. 2023 Aug 3;2023. doi: 10.17912/micropub.biology.000927. eCollection 2023.
8
Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency.
Environ Microbiol. 2022 Nov;24(11):5248-5260. doi: 10.1111/1462-2920.16157. Epub 2022 Aug 12.
9
Role of eIF5A in Mitochondrial Function.
Int J Mol Sci. 2022 Jan 24;23(3):1284. doi: 10.3390/ijms23031284.
10
Blocking Mitophagy Does Not Significantly Improve Fuel Ethanol Production in Bioethanol Yeast Saccharomyces cerevisiae.
Appl Environ Microbiol. 2022 Mar 8;88(5):e0206821. doi: 10.1128/aem.02068-21. Epub 2022 Jan 19.

本文引用的文献

1
Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo.
Curr Protoc Mol Biol. 2005 Feb;Chapter 21:Unit 21.3. doi: 10.1002/0471142727.mb2103s69.
3
Transcriptional repression by Tup1-Ssn6.
Biochem Cell Biol. 2006 Aug;84(4):437-43. doi: 10.1139/o06-073.
5
A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae.
Genetics. 2006 Sep;174(1):191-201. doi: 10.1534/genetics.106.059964. Epub 2006 Jun 18.
6
Recruitment of Tup1p and Cti6p regulates heme-deficient expression of Aft1p target genes.
EMBO J. 2006 Feb 8;25(3):512-21. doi: 10.1038/sj.emboj.7600961. Epub 2006 Jan 26.
10
Proline hydroxylation and gene expression.
Annu Rev Biochem. 2005;74:115-28. doi: 10.1146/annurev.biochem.74.082803.133142.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验