Suppr超能文献

血红素激活蛋白Hap1在酿酒酵母中通过一种不依赖血红素的机制抑制转录。

The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae.

作者信息

Hon Thomas, Lee Hee Chul, Hu Zhanzhi, Iyer Vishwanath R, Zhang Li

机构信息

Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, New York 10032, USA.

出版信息

Genetics. 2005 Mar;169(3):1343-52. doi: 10.1534/genetics.104.037143. Epub 2005 Jan 16.

Abstract

The yeast heme activator protein Hap1 binds to DNA and activates transcription of genes encoding functions required for respiration and for controlling oxidative damage, in response to heme. Hap1 contains a DNA-binding domain with a C6 zinc cluster motif, a coiled-coil dimerization element, typical of the members of the yeast Gal4 family, and an acidic activation domain. The regulation of Hap1 transcription-activating activity is controlled by two classes of Hap1 elements, repression modules (RPM1-3) and heme-responsive motifs (HRM1-7). Previous indirect evidence indicates that Hap1 may repress transcription directly. Here we show, by promoter analysis, by chromatin immunoprecipitation, and by electrophoretic mobility shift assay, that Hap1 binds directly to DNA and represses transcription of its own gene by at least 20-fold. We found that Hap1 repression of the HAP1 gene occurs independently of heme concentrations. While DNA binding is required for transcriptional repression by Hap1, deletion of Hap1 activation domain and heme-regulatory elements has varying effects on repression. Further, we found that repression by Hap1 requires the function of Hsp70 (Ssa), but not Hsp90. These results show that Hap1 binds to its own promoter and represses transcription in a heme-independent but Hsp70-dependent manner.

摘要

酵母血红素激活蛋白Hap1可与DNA结合,并在血红素的作用下激活编码呼吸作用所需功能以及控制氧化损伤的基因的转录。Hap1包含一个带有C6锌簇基序的DNA结合结构域、一个卷曲螺旋二聚化元件(这是酵母Gal4家族成员所特有的)以及一个酸性激活结构域。Hap1转录激活活性的调控由两类Hap1元件控制,即抑制模块(RPM1 - 3)和血红素反应基序(HRM1 - 7)。先前的间接证据表明Hap1可能直接抑制转录。在此我们通过启动子分析、染色质免疫沉淀以及电泳迁移率变动分析表明,Hap1直接与DNA结合,并将其自身基因的转录至少抑制20倍。我们发现Hap1对HAP1基因的抑制作用独立于血红素浓度。虽然DNA结合是Hap1转录抑制所必需的,但Hap1激活结构域和血红素调节元件的缺失对抑制作用有不同影响。此外,我们发现Hap1的抑制作用需要Hsp70(Ssa)的功能,但不需要Hsp90。这些结果表明,Hap1与其自身启动子结合,并以一种不依赖血红素但依赖Hsp70的方式抑制转录。

相似文献

1
The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae.
Genetics. 2005 Mar;169(3):1343-52. doi: 10.1534/genetics.104.037143. Epub 2005 Jan 16.
2
The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme.
Mol Cell Biol. 2001 Dec;21(23):7923-32. doi: 10.1128/MCB.21.23.7923-7932.2001.
4
Functional analysis of heme regulatory elements of the transcriptional activator Hap1.
Biochem Biophys Res Commun. 2000 Jul 5;273(2):584-91. doi: 10.1006/bbrc.2000.2995.
6
Regulation of the HAP1 gene involves positive actions of histone deacetylases.
Biochem Biophys Res Commun. 2007 Oct 12;362(1):120-125. doi: 10.1016/j.bbrc.2007.07.156. Epub 2007 Aug 8.
7
A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex.
J Biol Chem. 2004 Jun 25;279(26):27607-12. doi: 10.1074/jbc.M402777200. Epub 2004 Apr 21.
8
Multiple domains mediate heme control of the yeast activator HAP1.
Mol Gen Genet. 1995 Jul 28;248(2):229-35. doi: 10.1007/BF02190805.

引用本文的文献

1
Clinical Isolate of from a Patient in North Carolina: Identification, Whole-Genome Sequence Analysis, and Anticandidal Activity of .
Open J Med Microbiol. 2025 Mar;15(1):11-35. doi: 10.4236/ojmm.2025.151002. Epub 2025 Mar 5.
2
Discovery of Natural Products With Antifungal Potential Through Combinatorial Synergy.
Front Microbiol. 2022 Apr 26;13:866840. doi: 10.3389/fmicb.2022.866840. eCollection 2022.
4
"Labile" heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in .
J Biol Chem. 2020 Apr 10;295(15):5095-5109. doi: 10.1074/jbc.RA120.012739. Epub 2020 Feb 18.
5
A Novel Sterol-Signaling Pathway Governs Azole Antifungal Drug Resistance and Hypoxic Gene Repression in .
Genetics. 2018 Mar;208(3):1037-1055. doi: 10.1534/genetics.117.300554. Epub 2017 Dec 20.
7
Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs.
Antioxid Redox Signal. 2018 Dec 20;29(18):1841-1857. doi: 10.1089/ars.2017.7368. Epub 2017 Nov 14.
8
Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
J Biol Chem. 2017 Oct 13;292(41):16942-16954. doi: 10.1074/jbc.M117.790923. Epub 2017 Aug 22.
9
The Swi3 protein plays a unique role in regulating respiration in eukaryotes.
Biosci Rep. 2016 Jun 30;36(3). doi: 10.1042/BSR20160083. Print 2016 Jul.

本文引用的文献

1
Global role of TATA box-binding protein recruitment to promoters in mediating gene expression profiles.
Mol Cell Biol. 2004 Sep;24(18):8104-12. doi: 10.1128/MCB.24.18.8104-8112.2004.
2
Genome-wide analysis of the biology of stress responses through heat shock transcription factor.
Mol Cell Biol. 2004 Jun;24(12):5249-56. doi: 10.1128/MCB.24.12.5249-5256.2004.
3
Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein.
Eukaryot Cell. 2003 Dec;2(6):1288-303. doi: 10.1128/EC.2.6.1288-1303.2003.
4
Synergistic repression of anaerobic genes by Mot3 and Rox1 in Saccharomyces cerevisiae.
Nucleic Acids Res. 2003 Oct 15;31(20):5831-7. doi: 10.1093/nar/gkg792.
7
Recent advances in understanding chromatin remodeling by Swi/Snf complexes.
Curr Opin Genet Dev. 2003 Apr;13(2):136-42. doi: 10.1016/s0959-437x(03)00022-4.
8
Evidence that Swi/Snf directly represses transcription in S. cerevisiae.
Genes Dev. 2002 Sep 1;16(17):2231-6. doi: 10.1101/gad.1009902.
9
Molecular chaperones in the cytosol: from nascent chain to folded protein.
Science. 2002 Mar 8;295(5561):1852-8. doi: 10.1126/science.1068408.
10
The molecular chaperone Hsp90 mediates heme activation of the yeast transcriptional activator Hap1.
J Biol Chem. 2002 Mar 1;277(9):7430-7. doi: 10.1074/jbc.M106951200. Epub 2002 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验